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umption
Proof

What is it About?

@ Hawking radiation, temperature, entropy
@ Negative specific heat
@ With pressure positive specific heat

@ and 4 times the original entropy (at the same temperature)
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0 Traditional horizon entropy and temperature (Hawking)
e Homogenity class assumption about volume dependence
e Proof of positive specific heat

@ Charged black holes
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Traditional horizon entropy and temperature (Hawking)

Unruh effect on monochromatic source

Accelerating source — smeared Doppler
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Traditional horizon entropy and temperature (Hawking)

Bekenstein-Hawking entropy

Simple estimate

Entropy = 1/4 Horizon Area

| \
At Schwarzschild radius R = 2GM/c? the gravitational acceleration is
g = GM/R? = ¢?/2R. The Unruh temperature in proper units becomes
_ hg
keTy = 5. (1)
Clausius’ entropy if E = Mc? becomes
S  [dMc®) ¢ o, 1A
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Traditional horizon entropy and temperature (Hawking)

Temperature

Unruh, Hawking, spectral

Planck scale units: ¢ =1, Lp = GMp, Lp = h/Mp.  Entropy units: kg = 1.
(constant) acceleration occurs as (constant) temperature
g
T ==,
u(g) =5 3)
Radial space time metric

2 _ dr2
ds® = f(r)df® Gl (4)
Maupertuis action S = m [ ds = [ Lds in terms of proper time. Being a static
metric, E = 2 = f(r)t is constant. Therefore

= K2 — (r). (5)
Its total derivative delivers the comoving aceleration

L1,

r=-3 fi(r) (6)
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Traditional horizon entropy and temperature (Hawking)

Entropy to Unruh and Hawking temperatures

Size of horizon

Horizon at r = R with f(R) = 0. Here g = |f'(R)|/2.

1, 1 0p
To = Ty (§|fm)\) = L) )
For the Schwarzschild metric f(r) =1 —2M/r, R =2M and f'(R) = 1/2M
1
T = gei ®

Clausius’ entropy:

S = /dE = 4rn /If’ A~ 47r/ 8(f(r, M)) drdM. (9)

As a volume integral it defines entropy density:

S = /sd3r = /Ua(rzf(r, M)) dM] Pr. (10)

for Schwarzschild S = 7R? = A/4.
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Traditional horizon entropy and temperature (Hawking)

Horizon entropy thermodynamics

negative specific heat

Traditional analysis considers E = M and the EoS

S=nR? = 4r E%. (11)
Derivatives ©
1 oS 1
Instability problem: ®
1 28
— VCV T2 = ﬁ = 871' > 0 (1 3)

leads to ¢y < 0 and instable entropy maximum.
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Homogenity class assumption about volume dependence

S(E, V) thermodynamics

E =M, R = 2M put at the end only

Scaling anstaz: S(E, V) = Vs(E/V).
Energy density: &= E/V in the above ansatz.

Homogeneous EoS, s(¢), based thermodynamics.

1 oS /
T = -6
0S 7
? = W = 5(8) = €5 (E). (14)

This satisfies Ts =+ p
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Homogenity class assumption about volume dependence

EoS from radial integrals

2M

S = / s(r)4xr®dr = aSy = 4raM’,
0
M

E = /s(r)47rr2 dr = M, (15)
0

results in
s = a/2r, ¢e(r) = 1/8xr%, (16)

to conclude at the equation of state
Scaling Horizon Equation of State
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Homogenity class assumption about volume dependence

Consequences of scaling EoS

Hawking radiation pressure

From the s(¢) = k+/e type EoS it follows

1 5 S 5
T = 2 = 35 and ? =3 (18)
Scaling Horizon Equation of State
p(e) = e (19)

1-dim ideal radiation, causal
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Proof of positive specific heat
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Proof of positive specific heat

Consequences of scaling EoS
Thermal stability

2%s 8°s 1 _¢
dE? SEOV s"(¢)
det = det = 0. (20)
9%s 928 —_e g2
dVOE V2

Heat capacity and specific heat

O*S 0 , 1
B2 = BE° (e) = Ve (e). (21)

#s _ o1 _ 1o (22)
9E2 — DET ~ T20E G2

Stable if 225 < 0, i.e. with positive Cy.
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Proof of positive specific heat

Positivity of specific heat

cv = Cy/V (heat capacity per volume)

1 s'(e)?

- _ = — 23
= T T s (©3)
In our case with horizons s” = —s/4<2. It delivers
2
oy = B2 _ o /e >0 (24)

~(~5/4¢%)
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Proof of positive specific heat

Comparison with Hawking

Sk

1/ Ty

PH

Hawking

=  47M?

= 8mM

= -3/4M < 0

1/T

Cv

Present

4raM?
2raM
e = 3/327M° = 3/2A

S/V = 3a/8M > 0
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Proof of positive specific heat

Which choice to make?
a=4

Relation to Hawking temperature (another view):

i @_11_35+dv.as
Tw =~ adM — a OE ~ dM oV
11 pav] _ 1+2pA 4
= a{7+27ﬁ}_ ar  ~ ar (€9)
By the particular choice a = 4 we have
p=c=op  T=Ts S=4Si=A o =3/2M=2c{".
(26)

Proposal: black hole entropy is the total horizon area (in Planck units).
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Charged black holes
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@ Charged black holes
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Charged black holes

Horizon around static charge Q and mass M

Reissner-Nordstram metric

r?f(r) = r* —2Mr + Q = (r — r.)(r — ry with
e =M (1 1L m)
with p = Q/E = Q/M.
We seek for an entropy formula
S(E,V,Q) = k(u)VEV = anr?.

We require E = M and ¢ = Q/r; Coulomb potential.
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Charged black holes

Thermodynamics of charged black holes
The S(E, V, Q) view
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This satisfies TS = E + pV — oQ
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Charged black holes

Charged black holes

Determination of x(u)

We identify the Coulomb potential: ® = Q/r;:

_ o7 B
¢__1/T _27’“'”—1’ (30)
Q 1
= i 31
r'+ 1 + /1 _ /.L2 ( )
The solution is
w(p)? = const x (1 +v1- ,uz) x ry/M. (32)

The constant from V = 4xr2 /3 is 37a? /4.
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Charged black holes

Chraged black hole

pressure at the horizon

_ar_ _ 2

Using the above solution for x(x) we arrive at the EoS:
p = ev1—p2 (34)
For . = 0 we are back to the Schwarzschild result: p = e.

For extremely charged black holes i = 1, the pressure vanishes: p = 0.
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Charged black holes

Comparison with Hawking

The temperatures

”Old” construction (counting with temperature):

1 0 2S
7 - m M= T %)
"New” construction (counting also with pressure) by taking E = M, ri. (M) and
S = anr?:
1 0 S a i
L PR v/ R

Heat capacity

1 o 1

~CT2 ~ OET

____ S5 (VmMe—c¢-2m) < 0. (37)

va T 4(M2 — Q232

Biré Van Czinner BH positive



Charged black holes

Thermal stability

Specific heat vs geometry

We express our results in terms of ry:

_ o Iy —I—
C = arr; T > 0. (38)
ry —r-
T = .
anr? (39)

Specific heat behaves well at T = 0 (3rd law):

C 37|'a2 ry
Cv.q = V = 4 ntar T. (40)

Note: still S£0at T =0.
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Charged black holes

Charged black hole thermodynamics

in pictures 1

Reissner-Nordstrom horizon radii
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Charged black holes

Charged black hole thermodynamics

in pictures 2

Reissner Nordstrom temperature
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Charged black holes

Charged black hole thermodynamics

in pictures 3

Reissner Nordstrom specffic heat
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Charged black holes

Charged black hole thermodynamics

in pictures 4

Reissner Nordstrom specific heat vs temperature
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Proof eat
ed black holes

Summary

@ S(E, V) thermodynamics instead of S(E) thermodynamics

@ Hawking radiation has not only temperature, but also
pressure

@ The horizon area shall be a better entropy measure than
its one fourth
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