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Renormalization of bilocal potentials

TRADITIONAL RG

m The functional renormalization group technique (RG) is used to find the
relevant interactions and describe the phase structure of various models.

m This method enables us to remove the degrees of freedom of a physical
system successively.

m The traditional RG technique

m It is based on the scale invariance of the transition amplitude between an in

and an out (pure) states.

m The blocking transformation takes into account only the contributions of the
pure states.

Renormalization of bilocal potentials Imola Steib



Renormalization of bilocal potentials

Motivation, CTP (SCHWINGER-KELDYSH) FORMALISM

m We can take into account the contribution of the mixed states — Closed
time path (CTP, Schwinger-Keldysh ) formalism

m CTP:

m generating functional:
Z[j*, i) = Te[U(ts, ti; )i (g, ti; =)

m we can consider expectation values
m initial state —final state (reflected)— initial state

m reflection — closed path and nontrivial connection between the two time
axes

m interaction between the time axes — non-local potential

— Bilocal potential
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MOTIVATION AND THE BILOCAL POTENTIAL

bilocality — two well separated points — more general treatment
m the difficulty: momentum dependent bilocal couplings

m motivation: CTP Minkowski formalism containing bilocal potential

STP bilocality has not been investigated yet.

m Our main goal is to get the evolution equation for the bilocal potential
and investigate the phase structure.

m We use Euclidean formalism.
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INVESTIGATION OF THE BILOCAL POTENTIAL IN TRADITIONAL RG

m STP bilocality

m nontrivial saddle point evolution

m separation of the evolution of the bilocal potential into a saddle point and the
loop contributions

find a self-consistent system of flow equation for a closed set of the couplings
momentum dependent bilocal couplings

use Wegner-Houghton equation

determine the evolution of the bilocal potential beyond the tree-level
approximation
m investigate the phase structure
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BILOCAL POTENTIAL IN TRADITIONAL RG

m The model: 3d ¢*

m The Euclidean action

S = %L%Dg%x +Lu<¢x) +J

Vaiy(¢x, dy)
Xy
Local potential:

Bilocal potential

Ox—ymn
Vx—y(¢1r¢2): Z mg,“ 4)1"4)3
mnz=1 o

Renormalization of bilocal potentials

Viey(P1,¢2) = Vy—x(¢2,$1)
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WH EQUATION

m We use Wegner-Houghton equation

m ¢ is separated into two terms: ¢ — ¢ + ¢ — sharp cutoff

m ¢ denotes the IR component, that is non-vanishing for 0 < |p| < k — Ak

m ¢ stands for the UV term , that is non-vanishing for k — Ak < |p| <k

m The elimination of the UV modes

e—%&}Au¢)=‘[Eq¢y;%su¢+m
m Evolution equation

&Si[¢ + po + 9]
opog lg=0

h
Sk—ak(¢) = Skl¢ + @o] + 5Irin
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WH EQUATION

m We consider the evolution equation at ¢, = ® + xx

where ® and x, denote a homogeneous and a generic, infinitesimal,
inhomogeneous IR field.

m The form of the action up to O(¢2) term

1 -
[(ch] = Ef (PxDx—ly(Py +f Lx@x,
xy x
m where the inverse propagator on the inhomogeneous IR field is
—1 —1
Dy, = Do,y
m and

+ 5xy[u”<?() + Za%vx—y (Xxs Xy)] + 20102 Vy—y (Xxs Xy)

Lo = U(xa) +2 J &1 Vaey (X Xy)
Yy

wesetd =0
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WH EQUATION

m O(x?) tree-level contributions
m O(x3) fluctuations

m @ denotes the saddle point,

Pox = —J DyyLy
y

m The corresponding tree-level change of the action is

ASt = !

——= | LyDyL
ZJ;nyny
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BILOCALITY AND TREE-LEVEL

m Bilocal potential and tree-level:
m STP euclidean: there is a tree-level evolution
— there is a non trivial saddle point

— it is bilocal, we can follow its evolution. The evolution of the saddle point
is determined by the tree level evolution.

m Local potential — we have tree-level evolution — We can not follow the
evolution of the saddle point.

m Bilocal potential — we have tree-level evolution — we can follow the
evolution of the saddle point.
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WH EQUATION AND TREE-LEVEL

m RG equation: Wegner-Houghton equation

Wegner-Hougton equation

Wetterich equation

m sharp cutoff m smooth cutoff

m we can linearize the evolution
equation—saddle point
—we have tree-level evolution

—we can determine the saddle point

m we can not linearize the evolution
equation

—difficult numerical problem
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EVOLUTION OF THE LOCAL AND BILOCAL POTENTIAL

Evolution equations:

Local couplings Bilocal couplings
. 384 . _ ion:
$2 = —azk o5 - 20011 m Tree l.evel evoklutlzon.
k Ug33 = @345’%
s _ . 1386 398y
84 = —ask 2 +ask 4 6002 m Loop evolution:
. 15 3043 i3
3198486 3983 .
86 = t3k” —= —azk” —= 0011 = —203—5 Uk
w w w
k k k
. 3
Uopp = —2a3 2 Uk3s
Wi
v _nk f 1%
g1 = p22
T w?
where k=P
2 _ 12 _ 0 . ) k
Wi = k + 82+ 2011, a4 = m Vg2 = J Up33
T “’k p
=] F = E DA
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COUPLINGS

m Momentum dependent tree-level bilocal coupling:

. k
0433 = —— 1)
q 2%%84 k.q

® v;33 — we should include the evolution of gg
m local potential — quartic coupling

m bilocal potential — at least the sixth order couplings needed to get the
evolution

m closed system of couplings
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RESULTS

m Phase diagram:

Local potential Bilocal potential

190
~ 180
9 170
160
150

m 2 fixed points: Gaussian and Wilson-Fisher fixed points
m 2 phases: the symmetric and the broken symmetric phases
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RESULTS
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m Fixed points

m Local potential:
m Gaussian fixed point:
&=0 g=0 &=0
m Wilson-Fisher fixed point:

i 1
&=

1677 2567
4 5% _ 25% _
3’ hlg4 9 ’ hl 6 27
m Bilocal case: (tree-level) (h = Iy, /hy)
m Gaussi fixed point:
& =0, g'=0 &g =0
m Wilson-Fisher fixed point:
_ 1 _ 167t%(1 — 6h)
83‘ = U311’ hlgff =

9(1—4n? ’

nigy =
m significant difference between the local and bilocal cases

25674(1 — 6h)
27(1 — 4h)?

m non-continuous transition (0 < h < 1)
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Outlook

m S. Nagy, J. Polonyi, and 1. Steib, Bilocal Euclidean scalar field theory, in prep.
m semiclassical vacuum

m CTP loop corrections
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Thank you for your attention!
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