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Motivation
• Late 80’s, early 90’s: (triviality) bounds on the Higgs mass, from MC

simulations.
Many general results are already done (e.g. Huang et al., Phys. Rev. D 35,
3187 (1987).; Hasenfratz et al., Phys. Lett. B 199 (1987) 531). However, no
MC results on LCP.

• Recent interest: flux representation combined with worm algorithm can
overcome the sign problem at finite density. Gattringer and Kloiber, Nucl.
Phys. B 869, 56 (2013); Katz et al., Phys. Rev. D 95, 054506 (2017).

• Order of the phase transition?
→ continuum calculations seem to agree on 2nd order, with few exceptions.
But certain truncations do give a first order.
→ One outlying MC study: 1st order for small couplings. Bordag et al., Int. J.
Mod. Phys. A 27, 1250116 (2012).

• The ultimate test in scalar models, comparison of 2PI results.

• Understanding triviality from a different perspective. Is there a way to
approximately define a continuum limit?

• I want to learn MC simulation techniques ,



Action
Continuum:

S =

∫
d4x

1

2

(
∂µφ0 · ∂µφ0 +m2

0φ0(x) · φ0(x)
)

+
g0

4!
(φ0(x) · φ0(x))

2
+ h(x) · φ0(x) .

Discretised:

S = a4
∑

x

{
1

2

4∑

µ̂=1

(φ0(x+ aµ̂)− φ0(x)) · (φ0(x+ aµ̂)− φ0(x))

+
m2

0

2
φ0(x) · φ0(x) +

g0

4!
(φ0(x) · φ0(x))

2
+ h(x) · φ0(x)

}
.

Rewriting in terms of the hopping parameter:

S =
∑

x

{
ϕ(x) · ϕ(x)− 2κ

4∑

µ̂=1

(ϕ(x) · ϕ(x+ aµ̂)) + λ(ϕ(x) · ϕ(x)− 1)2

+H(x) · ϕ(x)− λ
}
,

with aφ0 =
√

2κϕ, g0 = 6λ/κ2, a3h = H/
√

2κ and a2m2
0 = (1− 2λ)/κ− 8.



Action

• Expressed in terms of bare quantities.

• The renormalized field is defined as φ0 =
√
ZφR and correspondingly

ϕ =
√
ZϕR.

• h also renormalizes, since h · φ0 = hR · φR, therefore hR = Z−1/2h and
HR = Z−1/2H.

We define the partition function

Z[h] = N−1

∫
[dφ] e−S[φ] ,

with N = Z[0].



Observables - What and how?
The phyiscal quantities we measure:

• Field expectation value,

• Pole masses,

• Thermodynamical quantities:
→ (pseudo-)critical temperature,
→ pressure,

• Order of the phase transition at
h = 0.

The lattice we measure them on:

• Path integrals are carried out using
MC simulations. We generate a
Markov-chain of φ configurations
with P = N−1e−S[φ].

• Primary quantities are the averages
(noted as 〈.〉) of operators along the
Markov-chain.

• Secondary quantities are functions
of primary quantities.

• N3
S ×NT ≡ N lattice sites.

• Periodic boundary conditions.

• Metropolis/heatbath/Hybrid MC
algorithm mixed with overrelaxation
steps to generate the
configurations.
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Observables - Field expectation value

• O(n) symmetric case↔ ϕ is a n-element vector (ϕi, i = 0...n− 1).

• Direction of (constant) H ↔ 0-th component.

• i = 0 is the sigma (σ) direction and the rest are the pion (π) directions.

Definition of the renormalized φ̄ is ambiguous (we will use notations φ̄0 and φ̄σ)

φ̄0 =

√
2κ

Z
N−1

∑

x

ϕ(x) ·H
|H| ≡

√
2κ

Z
N−1

∑

x

ϕ0(x) ,

or, define ϕ̄ = N−1
∑
xϕ(x) and then

φ̄σ =

√
2κ

Z
N−1

∑

x

ϕ(x) · ϕ̄
|ϕ̄| .

Hasenfratz et al., Nucl. Phys. B 317, 81 (1989).



Observables - Field expectation value

• 〈φ̄0〉 coincides with the definition
δ logZ[h]

δh
.

• Due to the finite volume (no SSB) 〈φ̄0〉 ≡ 0 at vanishing source.

• h = 0 value of the expectation value of φ̄0 can be obtained as a limit.

• 〈φ̄σ〉 is non-vanishing even for h = 0 in the broken phase.

• 〈φ̄σ〉 only coincides with 〈φ̄0〉 in the h→∞ limit.

• Whichever definition we choose the renormalized vacuum expectation value
is the pion decay constant (fπ), and can be (in continuum studies usually is)
used in the parametrization of the model.



Observables - Field expectation value
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Observables - Field expectation value
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Observables - Field expectation value
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Observables - Pole masses
We define timeslice operators as

si(t) = N−3
S

∑

x∈Λt

ϕi(x) ,

Λt is the sublattice containing all points with time coordinate t.
The time correlator (propagator) matrix

Cij(t) = N−1
T

〈∑

t′

si(t+ t′)sj(t′)

〉
.

lim
t→∞

Cij(t) ∼ e−mt ,

with m the lowest mass in that channel.

At h 6= 0 the sigma and pion channels decouple, and the corresponding diagonal
elements are dominated by mσ or mπ respectively.



Observables - Pole masses
The sigma propagator at h = 0 can be reached either by extrapolation, or by
using timeslice operators constructed similarly to φ̄σ

sσ(t) = N−3
S

∑

x∈Λt

ϕ(x) · ϕ̄
|ϕ̄| .

Then we define the time correlator

Cσ(t) = N−1
T

〈∑

t′

sσ(t+ t′)sσ(t′)

〉
.

Due to the periodicity in t direction the correlator behaves as

∼ ( e−mt + e−m(NT−t)) ,

which can be fitted to the data very well, to obtain the pole masses.



Observables - Pole masses
One must remove the disconnected parts in the broken phase in order to see
that C(t→∞)→ 0 (up to a constant proportional to e−mNS), that is

〈
φ̄0/σ

〉2
respectively. Naı̈ve definition

Cij/σc = Cij/σ(t)−
〈
φ̄i/σ

〉〈
φ̄j/σ

〉
,

Interestingly most part of the error of the correlator comes from the disconnected
part. Instead of the naı̈ve connected propagator we define the correlator

Cij/σc = N−1
T

〈∑

t′

si/σ(t+ t′)sj/σ(t′)− φ̄i/σφ̄j/σ
〉
,

which in the infinite volume limit tends to the disconnected propagator
(Neuberger, Phys. Rev. Lett. 60, 889 (1988).).



Observables - Pole masses
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Observables - Pole masses
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Renormalization:
Line of Constant Physics with the eye of a continuum theorist

• Definition of LCP: a line in the bare parameter space, along which the ratio of
chosen observables are constant.

• We will choose φ̄, mσ and mπ ⇒ two constraints in a 3-d space gives a line.

• Along this line the measured lattice value of the observables change, that is
aφ̄ (or the others respectively). By setting φ̄ to its physical value, fπ = 93 MeV,
we obtain a in physical units.

• Moving along the line towards a→ 0 we approach the continuum limit.



Renormalization:
Line of Constant Physics with the eye of a continuum theorist
Some thoughts on this process:

• In principle parametrization only forces us to set observables to physical
values strictly in the continuum limit.

• Fixing the value of certain observables as functions of a are actually
renormalization conditions. We are free to choose other conditions.

• Up until the continuum limit different choices give different results.

• This is well exemplified by the fact that we use φ̄ as an observable, which
contains the wave function renormalization Z, and therefore can be redifined
by a finite factor. The choice of Z will be discussed on the next slide.

• While mσ is uncertain experimentally (altough getting better and better) it
seems its physical value is out of the scope of the O(4) model. Nevertheless
we want to compare to 2PI in the same model, so we can compare.

• Triviality should appear as a non-analycity along the LCP. An approximate
continuum limit is definable if results scale with a before the non-analycity
affects their behaviour.



Renormalization: what is Z?
The main problem is that only the divergent part of Z is well defined, the finite
part is decided by renormalization conditions. There are several definitions in the
literature:

• From IR behaviour: C̃c(p = 0) ∼ Z, with C̃c the Fourier transform of Cc(t).
Montvay and Munster, “Quantum fields on a lattice”.

• From the residue of the propagator around the pole.
Hasenfratz et al., Phys. Lett. B 199 (1987) 531.

• From Ward identity: h/φ = G−1
π (p = 0).

We require that the r.h.s. G−1
π (p = 0)

!
= Z−1m2

π, that is Z = m2
πφ/h.



Observables - Thermodynamics
Pressure: continuum result from 2PI. Fixes the physical value of mσ.

Lattice pressure - ”integral method”:

p(T ) =
T

V
logZ

and

d logZ
d log a

=
d logZ
dm2

0

dm2
0

d log a
+
d logZ
dg0

dg0

d log a

+
d logZ
dh

dh

d log a
,

which can be integrated back along the LCP
to obtain the pressure.

Boyd et al., Nucl. Phys. B 469, 419 (1996);
Seel et al., JHEP 1307, 010 (2013).
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Pseudo-critical temperature: We define Tpc as the maximum of
dφ̄(T )

dT
. To fine

tune the temperature we need to use the LCP and tune T = aNT either by
changing NT or by chosing different parameters therefore changing a.



Outlook

• Shrink LCP to a line.

• Find the LCP on larger lattices.

• Measure the β-functions on the LCP.

• Using the β-functions, integrate the pressure.

• Find the continuum limit of Tpc.

• Check the claim that for small bare coupling there is a 1st order PT (a
metastable solution exists).

Bordag et al., Int. J. Mod. Phys. A 27, 1250116 (2012).


