Linear sigma model on the lattice: a learning example

Gergely Markó

Eötvös Loránd University, Theoretical Physics Department

National Research, Development and Innovation Office NKFIH, 121064
2017, 21st of September, Zalakaros

- Motivation
- Action
- Observables
- Renormalization
- Some more observables
- Outlook

Motivation

- Late 80's, early 90's: (triviality) bounds on the Higgs mass, from MC simulations.
Many general results are already done (e.g. Huang et al., Phys. Rev. D 35, 3187 (1987).; Hasenfratz et al., Phys. Lett. B 199 (1987) 531). However, no MC results on LCP.
- Recent interest: flux representation combined with worm algorithm can overcome the sign problem at finite density. Gattringer and Kloiber, Nucl. Phys. B 869, 56 (2013); Katz et al., Phys. Rev. D 95, 054506 (2017).
- Order of the phase transition?
\rightarrow continuum calculations seem to agree on 2nd order, with few exceptions.
But certain truncations do give a first order.
\rightarrow One outlying MC study: 1st order for small couplings. Bordag et al., Int. J. Mod. Phys. A 27, 1250116 (2012).
- The ultimate test in scalar models, comparison of 2PI results.
- Understanding triviality from a different perspective. Is there a way to approximately define a continuum limit?
- I want to learn MC simulation techniques \odot

Action

Continuum:

$$
S=\int d^{4} x \frac{1}{2}\left(\partial_{\mu} \phi_{0} \cdot \partial_{\mu} \phi_{0}+m_{0}^{2} \phi_{0}(x) \cdot \phi_{0}(x)\right)+\frac{g_{0}}{4!}\left(\phi_{0}(x) \cdot \phi_{0}(x)\right)^{2}+h(x) \cdot \phi_{0}(x) .
$$

Discretised:

$$
\begin{aligned}
S= & a^{4} \sum_{x}\left\{\frac{1}{2} \sum_{\hat{\mu}=1}^{4}\left(\phi_{0}(x+a \hat{\mu})-\phi_{0}(x)\right) \cdot\left(\phi_{0}(x+a \hat{\mu})-\phi_{0}(x)\right)\right. \\
& \left.+\frac{m_{0}^{2}}{2} \phi_{0}(x) \cdot \phi_{0}(x)+\frac{g_{0}}{4!}\left(\phi_{0}(x) \cdot \phi_{0}(x)\right)^{2}+h(x) \cdot \phi_{0}(x)\right\} .
\end{aligned}
$$

Rewriting in terms of the hopping parameter:

$$
\begin{aligned}
S= & \sum_{x}\left\{\varphi(x) \cdot \varphi(x)-2 \kappa \sum_{\hat{\mu}=1}^{4}(\varphi(x) \cdot \varphi(x+a \hat{\mu}))+\lambda(\varphi(x) \cdot \varphi(x)-1)^{2}\right. \\
& +H(x) \cdot \varphi(x)-\lambda\},
\end{aligned}
$$

with $a \phi_{0}=\sqrt{2 \kappa} \varphi, g_{0}=6 \lambda / \kappa^{2}, a^{3} h=H / \sqrt{2 \kappa}$ and $a^{2} m_{0}^{2}=(1-2 \lambda) / \kappa-8$.

Action

- Expressed in terms of bare quantities.
- The renormalized field is defined as $\phi_{0}=\sqrt{Z} \phi_{R}$ and correspondingly $\varphi=\sqrt{Z} \varphi_{R}$.
- h also renormalizes, since $h \cdot \phi_{0}=h_{R} \cdot \phi_{R}$, therefore $h_{R}=Z^{-1 / 2} h$ and $H_{R}=Z^{-1 / 2} H$.

We define the partition function

$$
\mathcal{Z}[h]=\mathcal{N}^{-1} \int[d \phi] \mathrm{e}^{-S[\phi]}
$$

with $\mathcal{N}=\mathcal{Z}[0]$.

Observables - What and how?

The phyiscal quantities we measure:

- Field expectation value,
- Pole masses,
- Thermodynamical quantities:
\rightarrow (pseudo-)critical temperature,
\rightarrow pressure,
- Order of the phase transition at $h=0$.

Observables - What and how?

The phyiscal quantities we measure:

- Field expectation value,
- Pole masses,
- Thermodynamical quantities:
\rightarrow (pseudo-)critical temperature,
\rightarrow pressure,
- Order of the phase transition at $h=0$.

The lattice we measure them on:

- Path integrals are carried out using MC simulations. We generate a Markov-chain of ϕ configurations with $P=\mathcal{N}^{-1} \mathrm{e}^{-S[\phi]}$.
- Primary quantities are the averages (noted as \langle.$\rangle) of operators along the$ Markov-chain.
- Secondary quantities are functions of primary quantities.
- $N_{\mathrm{S}}^{3} \times N_{\mathrm{T}} \equiv N$ lattice sites.
- Periodic boundary conditions.
- Metropolis/heatbath/Hybrid MC algorithm mixed with overrelaxation steps to generate the configurations.

Observables - Field expectation value

- $O(n)$ symmetric case $\leftrightarrow \varphi$ is a n-element vector $\left(\varphi^{i}, i=0 \ldots n-1\right)$.
- Direction of (constant) $H \leftrightarrow 0$-th component.
- $i=0$ is the sigma (σ) direction and the rest are the pion (π) directions.

Definition of the renormalized $\bar{\phi}$ is ambiguous (we will use notations $\bar{\phi}^{0}$ and $\bar{\phi}^{\sigma}$)

$$
\bar{\phi}^{0}=\sqrt{\frac{2 \kappa}{Z}} N^{-1} \sum_{x} \frac{\varphi(x) \cdot H}{|H|} \equiv \sqrt{\frac{2 \kappa}{Z}} N^{-1} \sum_{x} \varphi^{0}(x),
$$

or, define $\bar{\varphi}=N^{-1} \sum_{x} \varphi(x)$ and then

$$
\bar{\phi}^{\sigma}=\sqrt{\frac{2 \kappa}{Z}} N^{-1} \sum_{x} \frac{\varphi(x) \cdot \bar{\varphi}}{|\bar{\varphi}|} .
$$

Observables - Field expectation value

- $\left\langle\bar{\phi}^{0}\right\rangle$ coincides with the definition $\frac{\delta \log \mathcal{Z}[h]}{\delta h}$.
- Due to the finite volume (no SSB) $\left\langle\bar{\phi}^{0}\right\rangle \equiv 0$ at vanishing source.
- $h=0$ value of the expectation value of $\bar{\phi}^{0}$ can be obtained as a limit.
- $\left\langle\bar{\phi}^{\sigma}\right\rangle$ is non-vanishing even for $h=0$ in the broken phase.
- $\left\langle\bar{\phi}^{\sigma}\right\rangle$ only coincides with $\left\langle\bar{\phi}^{0}\right\rangle$ in the $h \rightarrow \infty$ limit.
- Whichever definition we choose the renormalized vacuum expectation value is the pion decay constant $\left(f_{\pi}\right)$, and can be (in continuum studies usually is) used in the parametrization of the model.

Observables - Field expectation value

Observables - Field expectation value

Observables - Field expectation value

Observables - Pole masses

We define timeslice operators as

$$
s^{i}(t)=N_{\mathrm{S}}^{-3} \sum_{x \in \Lambda_{t}} \varphi^{i}(x)
$$

Λ_{t} is the sublattice containing all points with time coordinate t. The time correlator (propagator) matrix

$$
C^{i j}(t)=N_{\mathrm{T}}^{-1}\left\langle\sum_{t^{\prime}} s^{i}\left(t+t^{\prime}\right) s^{j}\left(t^{\prime}\right)\right\rangle
$$

$$
\lim _{t \rightarrow \infty} C^{i j}(t) \sim \mathrm{e}^{-m t}
$$

with m the lowest mass in that channel.
At $h \neq 0$ the sigma and pion channels decouple, and the corresponding diagonal elements are dominated by m_{σ} or m_{π} respectively.

Observables - Pole masses

The sigma propagator at $h=0$ can be reached either by extrapolation, or by using timeslice operators constructed similarly to $\bar{\phi}^{\sigma}$

$$
s^{\sigma}(t)=N_{\mathrm{S}}^{-3} \sum_{x \in \Lambda_{t}} \frac{\varphi(x) \cdot \bar{\varphi}}{|\bar{\varphi}|} .
$$

Then we define the time correlator

$$
C^{\sigma}(t)=N_{\mathrm{T}}^{-1}\left\langle\sum_{t^{\prime}} s^{\sigma}\left(t+t^{\prime}\right) s^{\sigma}\left(t^{\prime}\right)\right\rangle .
$$

Due to the periodicity in t direction the correlator behaves as

$$
\sim\left(\mathrm{e}^{-m t}+\mathrm{e}^{-m\left(N_{\mathrm{T}}-t\right)}\right),
$$

which can be fitted to the data very well, to obtain the pole masses.

Observables - Pole masses

One must remove the disconnected parts in the broken phase in order to see that $C(t \rightarrow \infty) \rightarrow 0$ (up to a constant proportional to $\mathrm{e}^{-m N_{\mathrm{S}}}$), that is $\left\langle\bar{\phi}^{0 / \sigma}\right\rangle^{2}$ respectively. Naïve definition

$$
C_{c}^{i j / \sigma}=C^{i j / \sigma}(t)-\left\langle\bar{\phi}^{i / \sigma}\right\rangle\left\langle\bar{\phi}^{j / \sigma}\right\rangle,
$$

Interestingly most part of the error of the correlator comes from the disconnected part. Instead of the naïve connected propagator we define the correlator

$$
C_{c}^{i j / \sigma}=N_{\mathrm{T}}^{-1}\left\langle\sum_{t^{\prime}} s^{i / \sigma}\left(t+t^{\prime}\right) s^{j / \sigma}\left(t^{\prime}\right)-\bar{\phi}^{i / \sigma} \bar{\phi}^{j / \sigma}\right\rangle,
$$

which in the infinite volume limit tends to the disconnected propagator (Neuberger, Phys. Rev. Lett. 60, 889 (1988).).

Observables - Pole masses

Observables - Pole masses

Renormalization:

Line of Constant Physics with the eye of a continuum theorist

- Definition of LCP: a line in the bare parameter space, along which the ratio of chosen observables are constant.
- We will choose $\bar{\phi}, m_{\sigma}$ and $m_{\pi} \Rightarrow$ two constraints in a 3-d space gives a line.
- Along this line the measured lattice value of the observables change, that is $a \bar{\phi}$ (or the others respectively). By setting $\bar{\phi}$ to its physical value, $f_{\pi}=93 \mathrm{MeV}$, we obtain a in physical units.
- Moving along the line towards $a \rightarrow 0$ we approach the continuum limit.

Renormalization:

Line of Constant Physics with the eye of a continuum theorist

Some thoughts on this process:

- In principle parametrization only forces us to set observables to physical values strictly in the continuum limit.
- Fixing the value of certain observables as functions of a are actually renormalization conditions. We are free to choose other conditions.
- Up until the continuum limit different choices give different results.
- This is well exemplified by the fact that we use $\bar{\phi}$ as an observable, which contains the wave function renormalization Z, and therefore can be redifined by a finite factor. The choice of Z will be discussed on the next slide.
- While m_{σ} is uncertain experimentally (altough getting better and better) it seems its physical value is out of the scope of the $O(4)$ model. Nevertheless we want to compare to 2 Pl in the same model, so we can compare.
- Triviality should appear as a non-analycity along the LCP. An approximate continuum limit is definable if results scale with a before the non-analycity affects their behaviour.

Renormalization: what is Z ?

The main problem is that only the divergent part of Z is well defined, the finite part is decided by renormalization conditions. There are several definitions in the literature:

- From IR behaviour: $\tilde{C}_{c}(p=0) \sim Z$, with \tilde{C}_{c} the Fourier transform of $C_{c}(t)$. Montvay and Munster, "Quantum fields on a lattice".
- From the residue of the propagator around the pole.

Hasenfratz et al., Phys. Lett. B 199 (1987) 531.

- From Ward identity: $h / \phi=G_{\pi}^{-1}(p=0)$.

We require that the r.h.s. $G_{\pi}^{-1}(p=0) \stackrel{!}{=} Z^{-1} m_{\pi}^{2}$, that is $Z=m_{\pi}^{2} \phi / h$.

Observables - Thermodynamics

Pressure: continuum result from 2PI. Fixes the physical value of m_{σ}.
Lattice pressure - "integral method":

$$
p(T)=\frac{T}{V} \log \mathcal{Z}
$$

and

$$
\begin{aligned}
\frac{d \log \mathcal{Z}}{d \log a}= & \frac{d \log \mathcal{Z}}{d m_{0}^{2}} \frac{d m_{0}^{2}}{d \log a}+\frac{d \log \mathcal{Z}}{d g_{0}} \frac{d g_{0}}{d \log a} \\
& +\frac{d \log \mathcal{Z}}{d h} \frac{d h}{d \log a}
\end{aligned}
$$

which can be integrated back along the LCP

to obtain the pressure.
Boyd et al., Nucl. Phys. B 469, 419 (1996);
Seel et al., JHEP 1307, 010 (2013).
Pseudo-critical temperature: We define $T_{p c}$ as the maximum of $\frac{d \bar{\phi}(T)}{d T}$. To fine tune the temperature we need to use the LCP and tune $T=a N_{T}$ either by changing N_{T} or by chosing different parameters therefore changing a.

Outlook

- Shrink LCP to a line.
- Find the LCP on larger lattices.
- Measure the β-functions on the LCP.
- Using the β-functions, integrate the pressure.
- Find the continuum limit of T_{pc}.
- Check the claim that for small bare coupling there is a 1st order PT (a metastable solution exists).

Bordag et al., Int. J. Mod. Phys. A 27, 1250116 (2012).

