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Chiral Magnetic Effect

What is the Chiral Magnetic Effect?

We see a normally unexpected electric current in a non-Abelien system evolving under a
strong magnetic field.
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Chiral Magnetic Effect

What is the Chiral Magnetic Effect?
Given a background EM magnetic field, and the QCD gauge fields.
An initially vanishing chiral imbalance could obtain non-zero value due to the
interaction with the gauge fields with non-zero Qw winding number.

Qw =
g2

32π2

∫
d4xF aµνF̃

µν
a ∈ Z (1)

Axial charge:
(NL −NR)t=∞ = 2NfQw (2)

Axial current (on the background field):

j5
µ = 〈ψ̄γµγ5ψ〉A (3)

D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227 (2008).
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Chiral Magnetic Effect

1 Chirally neutral mixture in very strong B field: particles constrained to Lowest Landau
Level.

2 Gauge interaction with non-zero Qw fields change chirality.
3 Chirality separation leads to charge separation, that leads to current.
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Chiral Magnetic Effect

Possible realisation in heavy-ion collisions:

Background: very strong B field due to highly charged nuclei passing near each
other.
Gauge: QCD gluons
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Chiral Magnetic Effect

Transition between different topologies can happen via tunneling.
The simplest configuration is a flux-tube, where the gauge fields are E||B.
This can be described by the Schwinger effect→ connection to pair production.
Already investigated for constant fields
Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa Phys. Rev. Lett. 104, 212001 2010.

Main idea: color diagonalisation leads to QED description with Ez, Bz from
chromoelectric/magnetic fields and with By from EM.
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Chiral Magnetic Effect

Main characteristics of the CME (electric) current jµ:
Ez = Bz = By = 0, nothing happens :)
Ez = 0, Bz 6= 0, By 6= 0, nothing happens.
Ez 6= 0, Bz = 0, By = 0, nothing happens.
Ez 6= 0, Bz 6= 0, By = 0, still nothing...
Ez 6= 0, Bz = 0, By 6= 0, still nothing...
Only in the case, when none of the three is zero, is there a CME current!
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Chiral Magnetic Effect

Q: How can we investigate the time dependence of this process?

A: Generalizing the Schwinger description as usual:
Wigner functions in the real time formalism.
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Wigner function

Tool of description: the Wigner function
Quantum analogue of the classical phase space distribution.

Wigner function of an n=3 Fock state.

Dániel Berényi CME with Wigner Functions 22. 09. 2017. 12 / 52



Wigner operator

Let’s first define the Wigner operator, that is the fourier transform of the density matrix:

%̂(x+, x−) = Ψ(x+)Ψ†(x−), x± = x± y

2
(4)

where x = x++x−
2 is the center of mass coordinate and y = x+ − x− is the relative

coordinate, and then

Ŵ (x, p) =

∫
d4y

(2π)4
e−ipy%̂

(
x+

y

2
, x− y

2

)
. (5)

Stefan Ochs, Ulrich Heinz, arXiv:hep-th/9806118 1998.
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Wigner operator

We can then define the four dimensional Wigner function as the expectation value:

W4(x, p) =
〈
Ŵ (x, p)

〉
, (6)

and its energy average

W (~x, ~p, t) =

∫
dp0W (x, p). (7)

In contrast to the classical distribution functions, these quantities can be negative at small
scales.
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Wigner operator

We can recover the classical one particle distribution function by averaging over
phase-space areas, that are much larger than the quantum uncertainty scale:

f(~x, ~p, t) =

∫
∆V

d3x′d3p′

(2π)3
W (~x− ~x′, ~p− ~p′, t), (8)

with ∆V = ∆3x∆3p� (~/2)3
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Wigner operator

The problem of the 4-dimensional formulation of the Wigner operator, is that it contains 2
time parameters:

t1 = x0 + y0/2 and t2 = x0 − y0/2.

Now, when fourier transforming we find that

W4(x, p) =

∫
dy0

2π
e−ip0y0

∫
d3y

(2π)3
e−i~p~y (9)〈

Ψ

(
~x+

~y

2
, x0 +

y0

2

)
Ψ†
(
~x− ~y

2
, x0 −

y0

2

)〉
, (10)

so at any fixed time W4 depends on Ψ,Ψ† at all times.
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Wigner operator

However, there is no such problem with the single-time, three dimensional Wigner
function:

W3(~x, ~p, t) =

∫
d3y

(2π)3
e−i~p~y

〈
Ψ(~x+

~y

2
, t)Ψ†(~x− ~y

2
, t)

〉
. (11)

It is also notable, that the single time Wigner function is just the energy integral of the four
dimensional Wigner function:

W3(~x, ~p, t) =

∫
dp0W4 (x = (t, ~x), p = (p0, ~p)) . (12)
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Wigner operator

Now the compromise is clear:

The 4 dimensional Wigner function contains all the off-shell physics, that is missing
from the single-time Wigner function, but
The 4 dimensional description cannot be formulated as an initial value problem, and
thus it is hard to use in practice.
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Wigner operator

One might also consider the higher moments of W4:

W3
(n)(~x, ~p, t) =

∫
dp0p

n
0W4 (x = (t, ~x), p = (p0, ~p)) . (13)

It can be shown, that all the information of W4 is contained in the infinite numer of energy
moments W (n)

3 .

Again, as higher moments has higher time derivates of the fields, the initial value
formulation would need all derivates of Ψ,Ψ† at t = t0 that is the same as knowing them
at all times.
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The gauge covariant Wigner operator

One might rewrite the density operator definition as follows:

%̂
(
x+

y

2
, x− y

2

)
= Ψ(x)e−

1
2

(∂x−∂†x)yΨ†(x). (14)

If we have gauge fields, we need the Wigner operator to transform accordingly. This can
be achieved:

%̂
(
x+

y

2
, x− y

2

)
= Ψ̄(x)eyD

†(x)/2 ⊗ e−yD(x)/2Ψ(x), (15)

with the covariant derivate: Dµ(x) = ∂µ − igÂµ(x).
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The gauge covariant Wigner operator

The covariant four dimensional Wigner operator is still the fourier transform:

Ŵ (x, p) =

∫
d4y

(2π)4
e−ipyΨ̄(x)eyD

†(x)/2 ⊗ e−yD(x)/2Ψ(x). (16)

The covariant derivate makes p the proper kinetic momentum rather than the canonical
one.
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The equation of motion

We are interested in the time evolution and would like to get an equation of motion for the
Wigner operator.

We can insert the Dirac equation and its adjoint into the definition of the Wigner operator
and get:

2mŴ = γµ
(
{Πµ, Ŵ}+ i[∆µ, Ŵ ]

)
,

2mŴ =
(
{Πµ, Ŵ} − i[∆µ, Ŵ ]

)
γµ,

(17)

To close the system the evolution of the field strength tensor couples to the current
expressed by the Wigner operator:[

Dµ(x), F̂µν(x)
]

= jµ(x) = ta tr taγνŴ(x,p). (18)
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The equation of motion

A more intuitive formulation is gained by adding and subtracting the above equations:

4mŴ =
{
γµ,
{

Πµ, Ŵ
}}

+i
[
γµ,
[
∆µ, Ŵ

]]
(19)

0 =
[
γµ,
{

Πµ, Ŵ
}]

+i
{
γµ,
[
∆µ, Ŵ

]}
. (20)

It can be shown, that the first equation describes generalized mass-shell constraints and
the second gives rise to dynamics.
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The equation of motion

We have two non-local operators:

Πµ = pµ +
2ig~
c

∫ 0

−1/2
ds s ∂νp F̂

[x]
νµ (x+ is~∂p) (21)

∆µ = ~Dµ(x)− g~
c

∫ 0

−1/2
ds ∂νp F̂

[x]
νµ (x+ is~∂p) (22)

defined in terms of the Schwinger string:

F̂ [x]
νµ (l) = U(x, l)F̂νµ(l)U(l, x), (23)

with l = x+ sy

and the path ordered line element: U(x, y) = P exp
(
ig
~c
∫ y
x dzµÂµ(z)

)
.
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The equation of motion

Now, as discussed earlier we need to get to the single time formulation for the energy
moments of the covariant four Wigner function.
Formally we end up with a system for the constraints:

Ŵ (~x, ~p, t)[n+1] =

n∑
k=0

Ok,n(...)Ŵ (~x, ~p, t)[k] (24)

and a similar one for the dynamics:

∂0Ŵ (~x, ~p, t)[n] +Qn(...)Ŵ (~x, ~p, t)[n] = −
n−1∑
k=0

Qk,n(...)Ŵ (~x, ~p, t)[k] (25)
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The equation of motion

It turns out that through Π0 the nth moment equations couple to the n+ 1th set of
equations linking the hierarchy.
But only the constraint equations contain such dependency, and they have no time
derivates.
The dynamical equation only couples to the m ≤ n terms, with the lower order
moments playing the role of source, and accordingly for n = 0 there is no source
term.
It is possible to derive from these a new infinite set of constraints that can be used to
construct all higher moment equations from the n = 0 one.
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The equation of motion

However, we need to use the following approximations:
Hartree approximation to distribute the expectation value over operator products:
〈ρ̂F̂µν〉 = 〈ρ̂〉Fµν
External field (classicality)

Also, we’ll specialize to QED.
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The equation of motion

The non local operators simplify to:

Πµ → Pµ = pµ + ie

∫ 1/2

−1/2
ds sFµν(x+ is∂p)∂

ν
p (26)

∆µ → Dµ = ∂µ − e
∫ 1/2

−1/2
ds Fµν(x+ is∂p)∂

ν
p (27)

And the 0th order equation of motion simplifies to:

D0W = −1

2
~D[γ0~γ,W ]− im[γ0,W ]− i ~P{γ0~γ,W} (28)

Dániel Berényi CME with Wigner Functions 22. 09. 2017. 28 / 52



The equation of motion

The Wigner function is usually decomposed into real functions by using the Dirac matrix
basis:

W (~x, ~p, t) =
1

4
[1s + iγ5p + γµvµ + γµγ5aµ + σµνtµν ] (29)
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Equations of motion for the spin-1/2 Wigner function

We arrive at a system for 16 unknown real functions:

Dts − 2~P ·~t1 =0 (30)

Dtp + 2~P ·~t2 =2ma0 (31)

Dtv0 + ~D~x · ~v =0 (32)

Dta0 + ~D~x · ~a =2mp (33)

Dt~v + ~D~xv0 + 2~P × ~a =− 2m~t1 (34)

Dt~a + ~D~xa0 + 2~P × ~v =0 (35)

Dt~t1 + ~D~x ×~t2 + 2~Ps =2m~v (36)

Dt~t2 − ~D~x ×~t1 − 2~Pp =0 (37)
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Simplification

For the CME calculation we are first interested in light quarks...
Let’s simplify things: m = 0.

Only the vector current / charge and the axial current / charge remains in the equations...
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Equations of motion for the m = 0 spin-1/2 Wigner function

A system for 8 unknown real functions remains:

Dtv0 + ~D~x · ~v =0 (38)

Dta0 + ~D~x · ~a =0 (39)

Dt~v + ~D~xv0 + 2~P × ~a =0 (40)

Dt~a + ~D~xa0 + 2~P × ~v =0 (41)
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Wigner function non-local operators

Also, to reduce dimensions, we consider homogeneous external fields.
In this case, the non-local operators are given exactly (without gradient expansion) as:

Dt = ∂t + g~E(t)~∇~p (42)

~D~x = g ~B(t)× ~∇~p (43)

~P = ~p (44)
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Observables

For the CME calculation we record the time evolution of the phase-space integrals of the
currents and charges:

vµ(t) =
1

(2π)3

∞∫
−∞

dp3vµ(t, ~p) , (45)

aµ(t) =
1

(2π)3

∞∫
−∞

dp3aµ(t, ~p) . (46)

Dániel Berényi CME with Wigner Functions 22. 09. 2017. 34 / 52



Numerical Solution

Ingredients of the 3+1 D numerical solver:

Pseudospectral collocation
Rational Chebyshev polynomial
basis
4th order Runge-Kutta
GPU Acceleration
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Numerical Solution

Rational Chebyshev polynomial basis:

TBn(x) = cos (n · acot(x/L)) (47)

-10 -5 0 5 -5 0 5 10

L
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Numerical Solution

Rational Chebyshev polynomial basis:

TBn(x) = cos (n · acot(x/L)) (48)

Collocation points:

xi = L · cot

(
πi

n+ 1

)
, i = 1...n (49)

Quadrature weights:

wi =
Lπ

n+ 1

1

sin2
(

iπ
n+1

) , i = 1...n (50)
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Verification

The Wigner function is related to the Feynman propagator:

W (~x, ~p, t) =
i

2

∫
d3se−i~p~sG(~x+ ~s/2, t, ~x− ~s/2, t) (51)

That makes possible to derive an exact solution for the static magnetic field case
(Bialinicky-Birula, Górnicki, Rafelski).

Also, there exist an analytical solution for the asymptotic energy density f(t→∞) for
E(t) = E0 cosh−2(t/τ) field (Narozhny, Nikishov).
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Sauter field

Start with a toy field that we know very well:

S(t) = cosh−2(t/τ) (52)
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Sauter field

S(t) = cosh−2(t/τ) (53)

Let the fields be:
Ez = A · S(t),

Bz = A · cos(α)S(t),

By = A · sin(α)S(t)
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Sauter field

Let’s check the CME characteristics:

Ez = Bz = By = 0, nothing happens :)

This is trivial: without fields, all derivatives vanish in the DHW equations
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Sauter field

Let’s check the CME characteristics:

Ez = 0, Bz 6= 0, By 6= 0, nothing happens.

Magnetic fields alone does not produce electric current.
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Sauter field

Let’s check the CME characteristics:

Ez 6= 0, Bz = 0, By = 0

There is current, but only in the direction of the E field. Nothing interesting.
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Sauter field

Let’s check the CME characteristics:

Ez 6= 0, Bz 6= 0, By = 0, still no CME current
Ez 6= 0, Bz = 0, By 6= 0, still no CME current
Only in the case, when none of the three is zero, is there a CME current!

Let’s see this!
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Sauter field
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Only in the case, when none of the three is zero, is there a CME current!
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Sauter field

CME formation during the interaction:
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Field comes first, then axial current and then electric current!
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Results

The Anomalous component of the electric current:
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Results

The Axial current in X direction:
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Toy model field for high energy collisions

Assume the following fields for a high energy collision:
Define the following time dependent function :

Φ(t, τ, A, κ) = A ·

{
cosh−2(10t/τ) t < 0,

(1 + t/τ)−κ t ≥ 0,
(54)

where we set κ = 2 and model the external fields as:

e ~E(t) = {0, 0, Φ(t, τ, AEz, κ)} , (55)

e ~B(t) = {0, ABy
(

1 +
t2

τ2

)−3/2

,Φ(t, τ, ABz, κ)} . (56)

with some phenomenological parameters.
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Toy model field for high energy collisions
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Summary

The DHW equations can predict electric and axial currents consistent with what
would be expected in the Chiral Magnetic Effect.
The fields are connected to the electromagnetic B, and the non-Abelian
chromoelectromagnetic E ,B fields.
The DHW description can act as a real time microscopic source for the effect in
non-central heavy-ion collisions
A phenomenologically parametrized model field shows the disappearance of the
effect at high energies and a sign change at intermediate energies.
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