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Motivation 1/2

Observation: baryon asymmetry of the Universe (BAU), that is the Universe seems to contain
relatively few antibaryons (for evidence see András Patkós’ talk)

• antimatter is not observed in our solar system
• high energy cosmic rays contains only a small amount of antimatter as secondary products

=⇒ no evidence of BAU on the galactic scale
• absence of hard γ rays from nearby clusters of galaxies, which are expected to be emitted in

nucleon-antinucleon annihilation =⇒matter/antimatter separation on a scale> 1012M⊙

• abundance of light elements (1,2,3H, 3,4He, 7Be, 7Li) explained in primordial nucleosynthesis (BBN)
using the baryon-to-photon ratio: P. A. Zyla et al. (PDG) PTEP 2020, 083C01 (2020)

ηBBN =
nB

nγ
=
nb − nb̄
nγ

= (5.8− 6.5)× 10
−10

(95% CL)

CMB gives a narrower range: ηCMB = (6.105± 0.055)× 10−10

known from cosmology that with 3 light neutrinos s = 7.04nγ (at present time)

=⇒ using T CMB
0 ≃ 2.725 K in nγ =

2ζ(3)

π2
T

3 gives η =
nB

s
= (8.2− 9.2)× 10

−11

densities: s: entropy, nb: baryon number, nb̄: antibaryon number, nγ: photon

Two possibilities/attitudes:
1. the net baryon number of the observed Universe may simply be set by initial conditions
2. a more appealing endeavor is to suppose that the net baryon number is calculable in terms of

microscopic physics, like the abundances of light elements in BBN
−→ baryogenesis (BG)≡ dynamical generation of the observed value of η

http://hector.elte.hu/iskola20/slides/Andras_Patkos_iskola20.pdf
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Motivation 2/2

Sakharov’s conditions required to obtain BAU starting from a symmetric Universe:
assuming CPT symmetry! JETP Lett. 5, 24 (1967)

1. baryon number violation (nonconservation)≡ ���B

2. violation of discreteC &CP symmetries (≡ �
��C & �����CP ) C: charge conjugation P : parity

3. deviation from thermal equilibrium

At first BG was proposed in grand unified theories (GUT). Problem with the classical scenario:
low reheating temperature after inflation Trh∼1011 GeV≪MGUT. Way out: preheating.

Then ’t Hooft realized (PRL37 (1976) 8) that in the EW theory fermion numbers are anomalous
=⇒B, L,B + L are anomalous and not conserved
=⇒ w/o Majorana ν massB − L is accidentally conserved in SM

Due to the anomaly, topology and the vacuum structure of the EW theory plays a role in EWBG.

Anomalous baryon number violation proceeds btw. vacuua with different quantum numbers:
– through tunneling (instantons)←− in the vacuum T = 0 and at low temperature (T ≪ TEW )

rate: Γ ∝ e−4π/αW = e−4π×137 sin2 θW ≈ e−400 ≈ 0 sin θ2W ≈ 0.23

– through sphaleron transitions←− rapid for T>100 GeV (Γsph≫H ,H : Univ. expansion rate)
=⇒ in a strong phase transition (PT) these transitions could in principle equilibrate to zero
(reduce, if there are conserved charges) any baryon asymmetry produced by GUT⊥ B − L

Since the minimal SM provides all the necessary ingredients for baryogenesis, it was suggested
that anomalous baryon violation in the weak interactions can produce baryon excess during a
strong 1st order EWPT Kuzmin, Rubakov & Shaposhnikov, PLB155, 36 (1985)
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Some conclusions and further motivations 1/2

EWBG in SM fails for two reasons:
– estimated amount of CP violation is too small: dCP/(100GeV)

12 ∼ 10−20

measure of �����CP : dCP = J × (m2
t−m

2
c)(m

2
t−m

2
u)(m

2
c−m

2
u)(m

2
b−m

2
s)(m

2
b−m

2
d)(m

2
s−m

2
d)

J = s12s23s31c12c23c
2
31 sin δCP Jarlskog invariant no �����CP if dCP vanishes

– the EWPT is of 1st order only for Higgs massmH ⪅ 73 GeV
Settled btw. ’95-’98 as a result of a collective effort: lattice (mainly) + analytic calculations

Csikor et al., PRL82 (1999) 21

=mH/mW

– continuum extrapolated result in 4D SU(2)-Higgs model
– done w/o fermions and the U(1)Y gauge boson
– PT order from the behavior of Lee-Yang zeros for V→∞
– figure shows: PT is of 1st order formH<66.5±1.4 GeV
– compared with results of the 3D version of the lattice
model (Gürtler et al., PRD56, 3888) showed the reliability of di-
mensional reduction (pert. integration of the heavy modes)
– perturbative inclusion of fermions (top) gave for SM:

mH < 72.4± 1.7 GeV
– already at that timemH>89.8 GeV =⇒ SM BG ruled out
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EWPT was re-analyzed after the discovery of the Higgs in the 3d SU(2)-Higgs lattice model
including recent algorithmic and action improvements D’Onofrio et al., PRL113 (2014) 141602

EWPT parameters, reflecting intrinsic SM properties, relevant also in low-scale leptogenesis:

– sharp crossover & Tc = (159.5± 1.5) GeV ←− determined from max. of dvdT

– sphaleron rate: symmetric phase (T>Tc): Γ(s)
sp = (18± 3)α5

wT
4

broken ph. (130GeV<T<Tc): ln
Γ(b)
sp

T 4
=(0.83±0.01)T [GeV]−(147.7±1.9)

– freeze-out temperature: Tsp, d = (131.7± 2.3) GeV ←−B-violating (sphaleron) transitions
decouple in the early Universe

Why considering EWBG in extensions of SM?

• EWBG is driven by the Higgs field, and a new particle introduced to solve the PT problem of
SM EWBG couples strongly to the Higgs.
• EWBG motivated simple extensions of SM also provide a testable dark matter candidate.
Also, in a 1st order PT bubble collisions, sound waves and MHD turbulence are detectable sources
of gravitational waves.
• EWBG requires new physics close to the EW scale =⇒ EWBG is predictive and falsifiable
simple models of EWBG have already been excluded
– by lack of direct discovery of the new light particles
– by limits from electric dipole moment searches, which are extremely sensitive to CP violation
•Many well-motivated possibilities remain and there are some new ideas (see talk by A. Patkós).

http://hector.elte.hu/iskola20/slides/Andras_Patkos_iskola20.pdf
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Meaning of Sakharov’s conditions

1) If the initial net baryon number in the Universe was zero and the baryon number were
conserved, the Universe today would still be symmetric.

2) CψC−1=iγ2γ0ψ̄T, Pψ(x)P−1=γ0ψ̄T(xp), Tψ(x)T−1=γ1γ3ψ̄T(xT) x=(t, x) xp=(t, -x)
CJµ(x)C−1 = −Jµ(x), PJµ(x)P−1 = Jµ(xp), TJµ(x)T−1 = Jµ(xT), xT=(-t, x)

current: Jµ=ψ̄(x)γµψ(x) charge: Q(t)=
∫
d3xJ0(x0, x)

x→−x
=

∫
d3xJ0(xp)

for Q̇ = 0 : CQC−1 = (CP )Q(CP )−1 = (CPT )Q(CPT )−1 = −Q and PQP−1 = Q

Remark: both ���C and ����CP are needed. We can see this in two ways.

A) Hamiltonian time evolution of the Universe from an baryon-symmetric initial state (I)

State of the Universe described by the density operator ρ(t) =
∑
n

pn |ψn(t)⟩ ⟨ψn(t)| ,Σ
n
pn=1

|ψn(t)⟩ state vector in Schrodinger picture

Quantum Liouville equation: i
∂ρ(t)

∂t
= Lρ(t) with Lρ(t) = [H, ρ(t)]

=⇒ formal solution ρ(t)≡ρIe−iLt with ρI≡ρ(t=tI) such that ⟨B⟩(t=tI)≡Tr[ρIB] = 0

If S ∈ {C,CP} is a symmetry =⇒ [H,S] = 0 =⇒ [ρ(t),S] = 0 =⇒

⟨B⟩(t)=Tr[ρ(t)B]=Tr
[
S−1S︸ ︷︷ ︸

1

ρ(t)B
]

cycl.
=

[ρ,S]=0
Tr
[
ρ(t)SBS−1︸ ︷︷ ︸

−B

]
=− Tr[ρ(t)B] =⇒ ⟨B⟩(t)=0



7B) Decay process whenCP is conserved

baryon numbers: BX = BY = 0 andBb = 1

For a left-handed particle YL C : YL → ȲL P : YL → YR =⇒ CP : YL → ȲR

Γ(X→YLbL)
CP
= Γ(X̄→ȲRb̄R)

Γ(X→YRbR)
CP
= Γ(X̄→ȲLb̄L)

}
+
=⇒Γ(X→YLbL)+Γ(X→YRbR)︸ ︷︷ ︸

Γ(X→Y + b)

∆B = 1

CP
= Γ(X̄→ȲRb̄R)+Γ(X̄→ȲLb̄L)︸ ︷︷ ︸

Γ(X̄→Ȳ + b̄)

∆B = −1

so, decays of particles and antiparticles create and destroy baryon number at the same rate
=⇒ net baryon number created in these processes vanish whenCP is conserved,

even whenC is violated, i.e. Γ(X → YL + bL) ̸= Γ(X̄ → ȲL + b̄L)



83) In thermal equilibrium:
forward and reverse reactions occur at the same rate, for both matter and antimatter processes:

Γ(X → Y + b) = Γ(Y + b→ X) and Γ(X̄ → Ȳ + b̄) = Γ(Ȳ + b̄→ X̄)

=⇒ even ifC andCP are simultaneously violated, i.e. Γ(X → Y + b) ̸= Γ(X̄ → Ȳ + b̄)

the baryon number produced inB violating forward and reverse reaction rates of each of the
matter and antimatter processes cancel out

Another way to see this:

⟨B⟩eq := Tr
[
e
−βH

B
]
= Tr

[
(CPT )

−1
(CPT )︸ ︷︷ ︸

1

e
−βH

B
]

=
cycl.

Tr
[
(CPT )e

−βH
B(CPT )

−1]
=

[CPT,H]=0
Tr
[
e
−βH

(CPT )B
(
CPT )

−1︸ ︷︷ ︸
−B

] = −Tr
[
e
−βH

B
]
= −⟨B⟩eq =⇒ ⟨B⟩eq = 0

SimultaneousC andCP violation means Γ(X → Y + b) ̸= Γ(X̄ → Ȳ + b̄).
Only when the reaction on one side is favored in a period of non-equilibrium evolution of the
Universe, net baryon number is produced.

Interactions of known particles are in thermal equilibrium for T∈(∼100, 1012) GeV, i.e. T>TEW.



9Departure from thermal equilibrium can be attained:
1. through the out-of-equilibrium decay of a heavy particle (decay rate: ΓX)
2. during a phase transition leading to the spontaneous breaking of a global symmetry

Scenario 1. (e.g.: GUT BG, BG through leptogenesis)
T ≫MX : all particles are in thermal equilibrium⇒ nX ≃ nX̄ ≃ nγ (up to factors related to

Bose and Fermi species, internal d.o.f.)

If ΓX > H : equilibrium abundance
neq

X

nγ
=
neq

X̄

nγ
≃
(
MX

T

)3/2

e
−MX/T can be maintained,

asX and X̄ can decay =⇒ no departure from equilibrium abundances
If ΓX ≲ H : X and X̄ cannot decay on the expansion time scale τU ∼ H−1 of the Universe

Td,X > MX : X and X̄ are weakly interacting⇒ cannot catch up with the Univ.’s expansion
=⇒ decouple from the thermal bath while still being ultrarelativistic: nX,X̄ ≃ nγ ≃ T 3

d,X

T < Td,X overabundance ofX, X̄ : nX,X̄ ≫ neq

X,X̄
=⇒ departure from thermal equilibrium

Scenario 2. The assumed 1st order PT needed for EWBG is driven by:
– thermal fluctuations ←− importance of loop corrections to classical potential old approach
– classical potential ←− loop corrections are assumed to be small new approach

Still: baryon asymmetry can develop whileB-violating interactions are still in thermal equilibrium
departure from thermal equilibrium needed to preserve the created baryon asymmetry

requirement: CPT breaking interaction for some time Cohen & Kaplan, PLB192 (1987) 251
scenario: thermalon ϕ coupled to JµB through a dim. 5 op. δL = Λ−1JµB∂µϕ (resulted at Λ≳T )
acts as an eff. chemical potential when it is spatially homogeneous and slowly varying:

∂0ϕ/Λ ≡ µeff =⇒ δL = µeffnB
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Fermion number anomaly in EWSM

Compared to a vector-like theory (QED, QCD), the fermionic part of the EW Lagrangian:

Lf =

NG=3∑
j=1

[
Ψ̄
j
Li /D(W⃗ ,B)Ψ

j
L + Ψ̄

j
Ri /D(B)Ψ

j
R

]
, Ψ

j
L = {LjL, q

j
L}, Ψ

j
R = {LjR, q

j
R}

contains left- and right-handed fields in different representations (chiral theory) PR/L = 1
2(1±γ5)

SU(2) doublet �elds : L
i
L = PL

{(
νe
e

)
,

(
νµ,

µ

)
,

(
ντ
τ

)}
q
i
L = PL

{(
u

d

)
,

(
c

s

)
,

(
t

b

)}
SU(2) singlet �elds : L

i
R = PR

{(
νe
e

)
,

(
νµ,

µ

)
,

(
ντ
τ

)}
q
i
R = PR

{(
u

d

)
,

(
c

s

)
,

(
t

b

)}
☛ only the left-handed field couple to the SU(2) gauge bosons W⃗µ (chiral theory)

Dµ(B) = 12×2∂µ − ig′BµY, Dµ(W⃗ ,B) = 12×2∂µ − igT⃗ · W⃗µ − ig′BµY Ta =
σa

2

☛ all fields, except for νeR, ν
µ
R, ν

τ
R, couple to the U(1)Y gauge bosonBµ:

quark with: Y
q
L =

(
1/6 0

0 1/6

)
Y
q
R =

(
2/3 0

0 −1/3

)
leptons with: Y

l
L =

(
−1/2 0

0 −1/2

)
Y
l
R =

(
0 0

0 −1

)
convention for Y : electric charge isQ = T3 + Y = 1

2

(
1 0

0 −1

)
+ Y
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There are many accidental global symmetries. In particular, there are vector-like symmetries:

ψ(x)→ e
iθ
ψ(x)

ψ̄(x)→ e
−iθ
ψ̄(x)

⇐⇒
ψL(x)→ e

iθ
ψL(x), ψR(x)→ e

iθ
ψR(x)

ψ̄L(x)→ e
−iθ
ψ̄L(x), ψ̄R(x)→ e

−iθ
ψ̄R(x)

leading at classical level to conserved Noether charges (when applied to quarks and leptons):

baryon number B =
1

3

∑
ψ
j
q

∫
d
3
x ψ̄

j
q(x)12×2 ⊗ γ0

ψ
j
q(x) ψ

j
q ∈ {q

j
L, q

j
R}

lepton number L =
∑
ψ
j
l

∫
d
3
x ψ̄

j
l (x)12×2 ⊗ γ0

ψ
j
l (x) ψ

j
l ∈ {l

j
L, l

j
R}

But, at quantum level the fermion number of the left-handed (LH) and right-handed (RH) fermions
is anomalous (triangle anomaly).

see Ch. 6.4.1 in K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies (2004)

In the SM LH and RH fermions couple with different strength to the gauge bosons
=⇒ both baryon and lepton numbers are anomalous

=⇒ relevant symmetry group of the EWSM:

{
SU(2)L × U(1)Y

}
gauge
×
{
U(1)B+L

}
global &
anomalous

NG=3

×
i=1

{
U(1)B

3 −Li

}
global
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Anomaly factor for baryon (Jµ

B) and lepton (Jµ
l ) currents

Triangle graphs giving nonvanishing contribution
to the anomaly of the baryon current:

figures from: N. D. Barrie, Cosmological Implications of
Quantum Anomalies, Springer theses, 2018

[
SU(2)L

]2U(1)B
(
U(1)Y

)2U(1)B

One can use the formula derived for chiral anomaly: (Eqs. (30.78)-(30.80) of Schwartz, QFT & SM (2014))

∂µJ
µ
a =

ϵµναβ

64π2

(∑
LH

particles

A
abc
r g

2
LF

b
µνF

c
αβ −

∑
RH

particles

A
abc
r′ g

2
RF

′ b
µν F

′ c
αβ

)
A
abc
r = tr

[
T
a
r

{
T
b
r , T

c
r

}]
anomaly factor

Tar generator in representation r

– no index a for baryon and lepton currents ( U(1)B and U(1)l sym.)⇒ T ar = 1

– no index of b and c for U(1)Y current ☛doublet nature of LH particles has to be included

– for
[
SU(2)L

]2
U(1)B/l: T

b/c
r =

σb/c

2
=⇒ A

bc
= tr

[
1

{
σb

2
,
σc

2

}]
=
δbc

2
tr 12×2 = δ

bc

– for
[
U(1)Y

]2
U(1)B/l: T

a
r =T

b
r=T

c
r =1 =⇒ A = 2



13Anomaly coeff. for baryon current

1) contribution of
[
SU(2)L

]2
U(1)B ☛only LH quarks couple to W⃗µ: coupling gL ∝ g

that LH quarks are in a doublet was already taken care when computing the trace∑
qL

A
bc
g
2
L = g

2
δ
bc
NG × 3

color
×

1

3
B number

= g
2
δ
bc
NG

2) contribution of
[
U(1)Y

]2
U(1)B ☛both LH & RH quarks couple toBµ: coupling gL/R ∝ g′

∑
qL

Ag
2
L −

∑
qR

Ag
2
R = 2×NG × 3×

1

3
×
{

2
two quarks
in a doublet

(
1

6

)2

−
[(

2

3

)2

+

(
−

1

3

)2]}

= 2NG

[
1

18
−

5

9

]
= −NG

Anomaly coeff. for lepton current

contribution of
[
SU(2)L

]2
U(1)B∑

lL

A
bc
g
2
L = g

2
δ
bc
NG

contribution of
[
U(1)Y

]2
U(1)B∑

lL

Ag
2
L−
∑
lR

Ag
2
R = 2×NG

[
2

(
−
1

2

)2

−(−1)2
]
=−NG

=⇒ identical contribution: ∂µJµB=∂µJ
µ
l =

NG

64π2
ϵ
µναβ[

g
2
F
b
µν(W )F

b
αβ(W )− g′2fµν(B)fαβ(B)

]
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Topology and the Chern-Simons number

To see the consequence of ∂µJ
µ
B=∂µJ

µ
l =

NG
64π2

ϵµναβ
[
g2F b

µνF
b
αβ−g

′2fµνfαβ
]

write:

g2

64π2
ϵ
µναβ

F
b
µνF

b
αβ =∂µK

µ
K
µ
=

g2

32π2
ϵ
µναβ

(
F
a
ναW

a
β − gϵabcW

a
νW

b
αW

c
β

)
g′

2

64π2
ϵ
µναβ

fµνfαβ =∂µk
µ

k
µ
=

g′
2

32π2
ϵ
µναβ

fναBβ

Neglect integrals like
∫
d3x∇ · K⃗ and introduceNCS =

∫
d3xK0, nCS =

∫
d3xk0

B(t)−B(0) = L(t)−L(0)=NG[NCS(t)−NCS(0)−(nCS(t)−nCS(0))]

For an abelian gauge field fµν ̸= 0 is required for kν ̸= 0, but for a non-abelian field, one can
haveKµ ̸= 0 even with F a

µν = 0 due to the term∝ g inKµ (i.e. in the pure gauge case)
=⇒ for vacuum configurations ∆nCS = 0

Consider inWa
0 = 0 gauge a field that it pure gauge: Wvac =

i
gU
−1∇U (Wi = Wa

i σ
a/2) with U ∈ SU(2) such

that U → 1 when |x⃗| → ∞. Such a configuration is a ground state, and since SU(2) ≃ S3 ⇒ U(x) : S3 7→ S3.
According to the homotopy theory, such mappings fall into equivalence classes characterized by winding
(Chern-Simons) numberNCS : two mappings to the same class if U1 can be continuously transformed to U2.

NCS invariant under ‘small’ gauge transformations, i.e., continuously connected to the identity.
NCS ̸= 0 for ’large’ gauge transformation (not continuously connected to the identity), of the form:

U
(1)

(x)=
x0+ix⃗ · σ⃗

r
, r=(x

2
0+|x⃗|

2
)
1/2

. . . U
(n)

(x) =
[
U

(1)
]n



15SM for θw = 0 is the SU(2) Higgs theory: SU(2)L gauge boson coupled to the Higgs fieldH.
In order to explore the vacuum structure we choose a constant Higgs, the gaugeW a

0 = 0

From the ground state G(0)
vac=

{
W

(0)
i =0, H

(0)
=(0, v), NCS=0

}
one can reach infinitely many ground states

G(n)
vac=

{
W

(n)
i =

i

g2

(
U

(n))−1∇U (n)
, H

(n)
=U

(n)
H

(0)
, NCS=n

}

separated by an energy barrier: −2 −1 0 1 2 3

Ε

NCS

Εsph

∆NCS = 1 in a transition from G(n)
vac to G(n±1)

vac =⇒ ∆B = ∆L = ±NG

Each transition creates 9 LH quarks (Nc ×NG) and 3 LH leptons (one per generation)

3
3∑
i=1

q
i
L +

3∑
i=1

ℓ
i
L ←→ 0
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SU(2)L Sphaleron

Klinkhammer and Manton’s type ansatz at T ̸= 0 for the sphaleron ϕsp
0 = {W a

i (x),H(x)}

W
a
i (x)σ

a
dx

i
= −

2i

g
f(r)U∞dU

−1
∞ H(x) =

v(T )
√
2
h(r)U∞

(
0

1

)
U∞ = U (1)(x0 = 0, x1, x2, x3) r = gv(T )|x| : dimensionless radial coordinate

The gauge and Higgs field radial profile functions f(r) and h(r):
– are determined numerically by imposing the stationary conditions on the energy functional:

r
2d

2f

dr2
= 2f(1− f)(1− 2f)−

1

4
r
2
h
2
(1− f)

d

dr

(
r
2dh

dr

)
= 2h(1− f)

2 −
λ

g2
r
2
h(1− h

2
)

– satisfy the boundary conditions: f(0) = h(0) = 0 and f(∞) = h(∞) = 1

– yields the energy functional: S3[ϕ
sp
0 ] ≡

Esp

T
=

4πv(T )

gT
B

(
λ

g2

)
S3 is the action of the SU(2) Higgs model (at T = 0 it is the classical action)

B

(
λ

g2

)
=

∫ ∞
0

dr

[
4

(
df

dr

)2

+
8

r2
f
2
(1− f)

2
+

r2

2

(
dh

dr

)2

+ h
2
(1− f)

2
+

1

4

(
λ

g2

)
r
2
(1− h

2
)
2

]
B(λ/g2) is weakly varying and ofO(1) and for T = 0 : 8GeV ≲ Esp ≲ 14GeV

Chern-Simons number (w/o the factor ofNG), that is baryonic and leptonic charge of a sphaleron
NCS(ϕ

sp
0 ) = 1/2
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SU(2)L Sphaleron

Distinction to be made: sphaleron solution vs. sphaleron (baryon number violating) process

Terminology concerning the solution of a classical field equations:
– instanton: localized, finite-action solution for imaginary time t (t2 ≤ 0, Euclidean)
– soliton: static, stable, finite-energy solution for real time t (t2 ≥ 0)
– sphaleron: static, unstable, finite-energy solution for real time t

(see F. Klinkhamer, Sphalerons in the SM)

sphaleron sol. – exists only in the broken symmetry phase (Higgs vev v ̸= 0)

– role in the washout factor and baryon number preservation criterion (BNPC)

depletion rate:
∂nB

∂t
=−k(T )nB , k(T )=−NG

13

2

Γsp(T )

V T 3
∼ A(T )e

−Esp/T

http://www.rug.nl/research/vsi/events/groenewold/klinkhamer.pdf
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SU(2)L Sphaleron

sphaleron process
– means conversion of quarks into leptons and vice-versa

e.g. 3l̄L −→ 9qL
∆B=9× 1

3−0=3 ∆L=0−3× (−1)=3 ∆Q=Qf−Qi
–L andB change by 3 units,B −L conserved,B +L violated

– occurs both in the symmetric and the broken phase

– effective in the symmetric phase, but cannot be calculated perturbatively

Γ
(s)
sp ∝

(
α

4
wT

4)
αw lnα

−1
w from dimensional analysis form: Bödeker NPB559 (1999) 502

only relevant scale: O(g2T ) mass scale of the transverse gauge bosons
at this scale pert. expansion breaks down: contribution of same order from an∞ nr. of diagrams
=⇒ proportionality factor κ determined in lattice simulations D’Onofrio et al., PRL113 (2014) 141602
and G D. Moore, PRD62 (2000) 085011

– suppressed in the broken phase, where sphaleron solution exists
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Bounce solution and false vacuum decay

QM tunneling (barrier penetration): in
WKB approximation the probability of
finding the particle at escape point σ with
zero kinetic energy is PWKB ∝ e

−2
∫ σ
0
√
2U

m=1, E=0

Coleman (PRD15 (1977) 2929) reformulated the problem: probability given by action related to the
bounce solution to the Euclidean EoM of a particle in inverted potential (τ = it)

P ∝ e−SE(xb), SE(x) =

∫ ∞
−∞

dτLE, LE =
1

2

(
dx

dτ

)2

+ U(x)

bounce solution xb(τ ): x(τ=−∞)=0 −→ x(0)=σ −→ x(τ=∞)=0

N.B.: particles bouncing back at x=σ→ the factor of 2 in exponent of PWKB is taken care of

WKB approximation corresponds to a classical trajectory, so in a path integral formulation of the
transition amplitude corrections comes from fluctuations around the classical path. At quadratic
order, Gaussian integral→ fluctuation operator ∂2

τ +ω
2 in the determinant is not positive definite!

bounce sol. is a saddle point =⇒ negative eigenvalue of fluct. operator =⇒ imaginary part in the
ground state energy =⇒ decay Callan & Coleman PRD16 (1977) 1762



20Field theoretical description of nucleation: sys-
tem minimizes its free energy by transition from
metastable state (ϕ1) to the true vacuum (ϕ3)
through classically forbidden configurations. The
bounce solution ϕB is a O(4) symmetric solution
(O(3) for T ̸= 0) of the Euclidean field equa-
tion (EoM). Fluctuation around the bounce solution
leads to imaginary free energy.

Need to calculate:
a) the classical action of a bubble solution (bounce solution)
b) the quadratic fluctuations around the classical (bounce) solution
c) the sum over infinitely many bounce solutions.

At finite temperature the decay rate of the false vacuum: A. D. Linde, NPB 216 (1983) 421

Γ(T )

V
=
|ω−|
π

(
S3(ϕB, T )

2πT

)3/2(det′[−∆ + V ′′(ϕB, T )]

det[−∆ + V ′′(ϕ1, T )]

)−1/2
e
−S3(ϕB,T )/T

bounce ϕB(x) is anO(3) symmetric (static) solution to∇2
ϕ = U

′
(ϕ) b.c. lim

|x|→∞
ϕ(x) = ϕ1

– bounce solution is a saddle point⇒ fluctuation operator around it has an unstable mode
⇒ ω− frequency is imaginary
– prefactor is the zero eigenvalue (mode) contribution present due to the invariance of the
bounce solution under translation of its center: 3 of them, each giving S3(ϕB, T )/(2πT )
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On the evaluation of the sphaleron rate in the broken phase

To get the decay rate we need to consider the free energy of a dilute sphaleron gas:

Γsp =
|ω−|
πT

Im Fs.g. =
|ω−|
π

Im
Zsp

Z0

=
|ω−|
π

Im e
−
(
Γeff [ϕ

sp]−Γeff [ϕ
EW]
)

The effective action Γeff[ϕ
sp
;T ] = S[ϕ

sp
0 ] + Γ1−loop[ϕ

sp
0 ] is computed in the 3d SU(2) Higgs model

in temporal-axial gauge (W a
0 = 0) from: Carson et al. PRD42 (1990) 2127

Z =

∫
DHDWe

−S3[H,W ;T ]
S3 =

1

T

∫
d
3
x
[
|DiH|2 +

1

4
W

a
ijW

a
ij + V (H,T )

]
giving: Γeff[ϕ

sp
] = S3[ϕ

sp
0 ] +

1

2
ln

(
detObos(ϕ

sp
0 )

detObos(ϕEW)

)
− ln

(
detOFP(ϕ

sp
0 )

detOFP(ϕEW)

)
Evaluation of the fluctuation determinants gives: Arnold & McLerran PRD36 (1987) 581

Γsp=
|ω−|
2π

[NV]tr[NV]rot
[v(T )

gT

]3
κe
−Esp
T =⇒

Γsp

V
=
|ω−|
2π
Ntr(NV)rot[gv(T )]

3
[v(T )

gT

]3
κe
−Esp/T

Vtr = V (gv(T ))3

Can be written in terms of the sphaleron energy using Esp(T ) =
4πv(T )
g B

(
λ
g2

)
=

2mW (T )
αw

B
(
λ
g2

)
– |ω−| contribution of the negative eigenvalue (unstable mode)
–NV obtained in terms of profile functions f(r) and h(r) from integrating the spatial zero
modes of the sphaleron using the method of collective coordinates

Vrot = 8π2 is the volume of the SO(3) group



22Measured on the lattice close to equilibrium is the Chern-Simons diffusion rate

Γdiff(T ) = lim
V,t→∞

⟨Q2(t)⟩T
V t

, Q(t) = NCS(t)−NCS(0) ,

which is twice the sphaleron rate.

D’Onofrio et al., PRL113 (2014) 141602

130 140 150 160 170
T / GeV

-45
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-10

lo
g

 Γ
/Τ

4

standard
multicanonical
fit
perturbative

pure gauge

log[αH(T)/T]

After adjusting a constant, the perturbative
result of Burnier et al„ J. Cosmol. Astropart. Phys.
02 (2006) 007, in which Esp(T ) was evaluated
with a 2-loop potential, agrees with the lattice
result and can be use to extend the latter to
values of T where there is no lattice data.
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Implication of sphaleron transitions in presence of conserved charges

correction to the simple prediction: Bf = −Lf = 1
2(B − L)|i f: final i: initial Bi = 0

obtained using thatB = B+L
2 + B−L

2 and that sphaleron process erasesB + L but preserves
B − L⇒ (B − L)|i = (B − L)|f

– rapid EW interactions in the early Universe between Higgs fields inH =

(
Φ+

Φ0

)
,W±, quarks

and leptons enforces equilibrium relations btw. chemical potentials

– processes only involve the left-handed fields

– the charge neutrality (and weak isospin I3 for T >Tc – not for T <Tc, as there SU(2)L is
broken) of the Universe must be preserved

T ≳ Tc : B =
28

79
(B − L)

L = −
51

79
(B − L)

T < Tc : B =
12

37
(B − L)

L = −
25

37
(B − L)

Harvey & Turner, PRD42 (1990) 3344

SU(3)c sphaleronlike transitions can modify these relations Mohapatra & Zhang, PRD45 (1992) 2699
In QCD there is no fermion number violation, only chiral charge can be generated, due to chiral
anomaly, that is net RH quark number can be converted in LH quark number, which can bias the
baryon asymmetry generation by SU(2) sphalerons (which only affects LH fields)
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EWBG mechanism in SM

Sakharov’s conditions satisfied: 1. �
��B realized by the finite-T anomalous sphaleron processes,

2. ����CP comes from the Cabbibo-Kobayashi-Maskawa matrix, 3. Out of equilibrium realized
via 1st order PT with bubble nucleation and expansion in a supercooled Universe.
As the Universe expands and cools, at TN<Tc,EW bubbles of true vacuum (broken phase
v≡⟨ϕ⟩ ̸=0) are created in the environment of false vacuum (symmetric phase, v=0).

v=0

v>0

v>0

v>0

v>0

v>0

v>0

CP

χ
R

χ
L
     +  

χ
L

Sphaleron

������
������
������
������
������
������
������
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������
������
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������
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������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

B

Bubble Wall

<φ> = 0 <φ> = 0

Sphaleron

broken phase
symmetric 

phase

Steps: 1) C and CP violating interaction with the bubble wall creates chiral asymmetry in particle
densities in front of the wall (difference of transmission to the bubble btw. the part. & antipart.).
2) Particles diffuse in the symmetric phase (bubble thickness, shape and velocity plays a role,
scattering and diffusion described by quantum transport equations) 3) Sym. phase EW sphaleron
transitions process LH particles producing a net baryon charge. 4) Rapidly expanding bubble
engulf the created baryons (before equilibration, as inverse sphaleron processes reduceB), and
broken phase sphaleron process rate abruptly drops in order to preserve the net baryon number.

O(70) alternative BG scenarios listed in a talk by M. Shaposhnikov at COSMO12

http://lss.bao.ac.cn/cosmo12/talk/0912am/COSMO12_plenary0912m_MikhailShaposhnikov.pdf
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Baryon number preservation criterion (BNPC)

(time)

Γ
H

log(rate)

log 1 / T

for T ∈ (∼ 100, 1013) GeV Γsp > H

we need abrupt decrease below Tc

For an approximate expression of the washout criterion: Patel & Ramsey-Musolf, JHEP07 (2011) 29

– integrate the depletion rate
dnB

dt
= −

13NG

2

Γsp

V T 3
nB from nucleation time t=0 where

T (t=0)=TN≲Tc to ∆tEW =⇒
nB(∆tEW)

nB(0)
= exp

[
−
13NG

2

∫ ∆tEW

0

dt
Γsp(T (t))

V T 3(t)

]

– set acceptable dilution factor:
nB(∆tEW)

nB(0)
> e

−X
(∗)

– 1) assume constant integrand over t, 2) use the expression of the sphaleron rate,
3) take the double logarithm of both sides of (∗)

=⇒ bound on
v(Tc)

Tc
:

4πB

g

v(TC)

TC
− 6 ln

v(TC)

TC
> − lnX − ln

(∆tEW
tH

)
+ lnZ + lnκ

result: v(Tc)/Tc = O(1) tH : Hubble time Z =

(
13nf

2

)
Ntr (NV)rot

(|ω−|tH
π

)
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Evaluation of Ve� – illustration of the ring resummation

Consider the partition function Z of the Yukawa model (scalar + fermion):

L=
1

2
∂µφ∂

µ
φ−Vcl(φ)+ψ̄

(
i/∂−gφ)ψ, Vcl(φ)=

m2

2
φ

2
+
λ

4
φ

4
, Z=

∫
DφDψ̄DψeiS

To obtain the ring resummation in the effective potential: 1) integrate out the fermions∫
Dψ̄Dψ exp

{∫
x
ψ̄[i/∂−gφ(x)]ψ

}
=Det[iS−1(φ)], iS−1(x, y)=

[
i/∂x−gφ(x)

]
δ(x−y)

=⇒ Z=

∫
DφeiSe�[φ] with Se�[φ]=

∫
x

[1
2
∂µφ∂

µ
φ−Vcl(φ)

]
︸ ︷︷ ︸

Sb[φ]

+−iTr log[iS−1(φ)]︸ ︷︷ ︸
Sf [φ]

2) do the shift φ(x)→v+φ(x) and expand Se�[φ] around the homogeneous background v

Sb[φ(x)+v]=Sb(v)+

∫
x
φ(x)

δSb
δφ

∣∣∣
φ=v

+
1

2

∫
x

∫
y
φ(x)iD−1(x, y)φ(y)+

∫
x
LI(v, φ(x))︸ ︷︷ ︸
λ(φ4+4vφ3)/4

Sf [φ(x)+v]=−iTr log[iS
−1
0 ]+g tr

∫
x
S0(x, x)φ(x)−

1

2

∫
x

∫
y
φ(x) ig

2
tr
[
S0(x, y)S0(y, x)

]︸ ︷︷ ︸
Π(x,y)

φ(y)+. . .

iD−1(x, y)≡
δ2Sm[φ]

δφ(x)δφ(y)

∣∣∣∣
φ=v

=
[
−∂2x−m

2
(v)
]
δ(x−y) m

2
(v)=

d2Vcl
dv2

=m
2
+3λv

2
iS−10 = i/∂−gv

. . . represents infinitely many one-loop n-point functions, beyond the 3- and 4- point ones
correcting the tree-level vertices in LI(v, φ(x))
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3) Do the remaining functional integral in Gaussian approximation, i.e. keeping in the expansion
of Se�[φ] only terms quadratic in φ(x)∫
Dφ exp

{1

2

∫
x

∫
y
φ · iG−1· φ

}
=Det

[
iG
−1]−1

2 iG
−1

(x, y)≡
δ2Seff [φ]

δφ(x)δφ(y)

∣∣∣∣
φ=v

= iD−1(x, y)−Π(x, y)

The effective potential in the Gaussian approximation in momentum space: (Kµ = (k0, k⃗))

V
GA
eff (v) = Vcl(v)−

i

2

∫
K

log
(
iG
−1

(K)
)
+ i trD

∫
K

log
(
iS−10 (K)

)
The second term on the r.h.s. represents the ring resummation:

log
(
iG
−1)

= log
(
iD−1 − Π

)
= log

(
iD−1

)
+ log

(
1 + iDΠ

)
= log

(
iD−1

)
−
∞∑
n=1

1

n

(
− iDΠ

)n



28Ring resummation is needed in a scalar φ4 theory in order to deal with the IR divergences
produced at high T (massless limit) by the static mode (zero Matsubara frequency).

The self-energy Π in the scalar poropagatorG contains at least the scalar tadpole∝ T 2

needed because otherwise the tree-level curvature mass of the scalar is negative for small v

Several approximations are possible:

– localization Π(K)→ Π(K = 0) =⇒ lnG−1 = + + + ...

.
.
.

– resummation of the zero mode only in a φ4 model curvature mass:M2=m2+Π(K = 0)∫
K

∑
ln
(
K

2
+M

2)
=

∫
K

∑′
ln
(
K

2
+ M

2

m2

)
+ T

∫
d3k

(2π)3
ln
(
K

2
+M

2) ′
: zero mode left out

−→
∫
K

∑
ln
(
K

2
+m

2)
+ µ

ϵ
T

∫
dd−ϵk

(2π)d−ϵ

[
ln
(
K

2
+M

2)− ln
(
K

2
+m

2)]
︸ ︷︷ ︸

−
T

6π

[
(M

2
)
3/2 − (m

2
)
3/2]

– dimensional reduction: integrating out only the non-static scalar modes (n ̸=0 in ωn=2πnT )
– high temperature expansion: reproduces the leading order result of the dimensional reduction

Improvement: include loop corrections of different topology than the daisy-type of the ring
resummation



29At finite temperature: k0→ iνn, νn=(2n+1)πT for fermions & k0→ iωn, ωn=2πnT for bosons∫
K

→ iT
∑
n

∫
d3k

(2π)3
summation over Matsubara frequencies

W/o ring resummation, that isG→ D, the scalar and fermion contributions to the 1-loop
effective potential contains each a divergent vacuum V (0) & a finite thermal V (1) parts:

V1−loop = V
(0)
1−loop + V

(1)
1−loop

V
(0)
1−loop = gs(−1)2s

[
−
i

2

∫
d4K

(2π)4
ln
[
−K2

+m
2
(v)− iε

]]
s : spin

= (−1)2s
gs

64π2

[
m

4
(v)

(
ln
m2(v)

Λ2
−

1

2

)
+ 2Λ

2
m

2
(v)

]
+O(Λ

4
)

v−indep
Λ : cut-o�

V
(1)
1−loop = gs(−1)2sT

∫
d3k

(2π)3
ln

[
1± e−

√
k2+m2(v)/T

]
± : fermion/boson

gs=1 for s=0 (scalar), gs=4 for s= 1
2 (fermion) and gs=1 for s=3 (massive vector boson)
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Calculation of v(Tc)/Tc in the SM

LSM = Lgauge + LGF+ghost + LHiggs + Lfermions + LYukawa

LHiggs=
(
DµH

)†
DµH + µ2

(
H†H

)
− λ

(
H†H

)2
, Dµ = ∂µ + ig

σa

2
W

a
+ ig

′1

2
Bµ

LGF=−
1

2ξ

[
∂
µ
W

a
µ −

1

2
ξgvG

a
]2
−

1

2ξ

[
∂
µ
Bµ −

1

2
ξg
′
vG1

]2
H =

1
√
2

(
G2 + iG3

v + h+ iG1

)
S-V cross terms from LGF and

(
DµH

)†
DµH combine to produce total divergences⇒ give 0

Approx. 1: Only top quark is included (heaviest fermion) ☛largest contribution to the eff. pot.
In early ’90s, before experimental discovery/confirmation in ’95, top mass of≈130 GeV was used
in calculations. Precise value:mt=(172.76±0.3)GeV

Tree-level masses: m2
t(v)=

y2t
2
v
2
, m

2
h(v)=−µ

2
+3λv

2
, mGi

(v)=−µ2
+λv

2
, i=1, 2, 3

m
2
W (v)=

g2

4
v
2
, m

2
Z(v)=(g

2
+g
′2
)
v2

4
, m

2
γ(v)=0, m

2
ghost=0 for ξ=0 (Landau gauge)

☛ photon and ghosts are massless =⇒ no v-dependent contribution to the eff. pot.

Approx. 2: Assumingmh<mW contribution of Higgs sector (h,G1,2,3) not included in the eff. pot.

Ve�(v) = Vcl(v) + VCT(v) + V
(0)
1−loop(v) + V

(1)
1−loop(v), Vcl(v) = −

µ2

2
v
2
+
λ

4
v
4

Renormalization done using the conditions
dn

dvn

[
VCT(v)+V

(0)
1−loop(v)

]
=0, n=1, 2, which

preserve the T =0 tree-level VEV and Higgs mass values, v0 andmh(v0)
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V

(0)
1−loop, R(v) =

1

64π2

∑
i=t,W,Z

ni(−1)2si
[
m

4
i (v)

(
ln
m2
i (v)

m2
i (v0)

−
3

2

)
+ 2m

2
i (v)m

2
i (v0)

]

V
(1)
1−loop(v) =

T 4

2π2

[ ∑
i=Z,W

niJb

(
m2
i (v)

T 2

)
− ntJf

(
m2
t(v)

T 2

)]
dof: nZ=3(polarization), nW=2(W±)×3=6, nh=1, nt=2(spin)×2(part.+ part)×3(color)=12

Approx. 3: high-T expansion (HTE) in the thermal part of Ve�(v) good even for the top

Jb(a
2
) =

∫ ∞
0

dxx
2
ln

[
1− e

√
x2+a2

]
= −

1

3

∫ ∞
0

dx
x4√
x2 + a2

1

e
√
x2+a2 − 1

= −
π4

45
+
π2

12
a
2 −

π

6
(a

2
)
3/2 −

a4

32
ln
a2

cb
+O(a

6
)

Jf(a
2
) =

∫ ∞
0

dxx
2
ln

[
1 + e

√
x2+a2

]
=

1

3

∫ ∞
0

dx
x4√
x2 + a2

1

e
√
x2+a2 + 1

=
7π4

360
−
π2

24
a
2 −

1

32
a
4
ln
a2

cf
+O(a

6
) cb=16cf=16π

2
e
−2γE+3/2

Usingm2
i (v)=m

2
i(v0)v

2
/v

2
0 =⇒ v and T dep. separate and vacuum mass appears =⇒

Parametrization: V
HTE
eff, 1-loop(v, T ) = D(T

2 − T 2
0 )v

2 − ETv3 + λ(T )v
4
/4 ≡ VT (v)

D =
2m2

W+m2
Z+2m2

t

8v20
, E=

2m3
W+m3

Z

4πv30
, T

2
0 =

m2
h−8Bv20
4D

, B=
3(2m4

W+m4
Z−4m4

t )

64π2v40

λ(T )=λ−
3

16π2v40

(
2m

4
W ln

m2
W

CbT
2
+m

4
Z ln

m2
Z

CbT
2
−4m

4
t ln

m2
t

CfT
2

)
m

2
i ≡ m

2
i(v0)

see, e.g., Quiros, arXiv:hep-ph/9901312 Cb/f = cb/fe
−3/2
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Behavior of VT (v) = D(T 2 − T 2

0 )v
2 −ETv3 + λ(T )v4/4

ForE = 0 PT is 2nd order with Tc = T0 and OP v(T )=T0

√
2D
λ(T )

[
1− T2

T2
0

]
for T <T0

ForE ̸= 0 PT is 1nd order and T0 is the lower spinodal temperature: V ′′T0(0) = 0

plot from arXiv:1511.00579v3
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–as T decreases from high values, a nontrivial minimum
appears at the spinodal temperature T1:

V
′
T1
(v1)=V

′′
T1
(v1)=0 =⇒


T

2
1 = T

2
0

[
1−

9E2

8Dλ(T1)

]−1
v1

T1

=
3E

2λ(T1)

– minima become degenerate at Tc:

0=VTc(0)︸ ︷︷ ︸
trivial

=VTc(vc)︷ ︸︸ ︷
0=V

′
Tc
(0)=V ′Tc(vc)

 =⇒


T

2
c =T

2
0

[
1−

E2

λ(Tc)D

]−1
vc

Tc
=

2E

λ(Tc)

– v = 0: – is metastable minimum for T <Tc
– survives as a minimum down to T =T0 where

it turns into a maximum
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Result and some remarks on the calculation of Ve�

Using v0=246.2 GeV, mh=125 GeV, mW=80.4 GeV, mZ=91.2 GeV and mt=172.9 GeV gives

B≃−4.4 10−3, D≃0.17, E≃9.6 10−3, λ(Tc)≈
m2
h

2v20
≈0.13 E. Senaha, Symmetry 12 (2020) 733

=⇒ Tc≃163.4GeV and vc≃24.3GeV =⇒
vc

Tc
≃0.15≪ O(1) needed by BNPC

=⇒ BNPC satisfied only formh ≲ 48 GeV

– ring resummation decreases vc/Tc because the Debye mass reducesE
M. Carrington, PRD45 (1992) 2933 M. Dine et al., PRD46 (1992) 550

– need to increaseE end/or decrease λ(Tc)←− possible with extra scalars, as suggested in
Anderson & Hall, PRD45 (1991) 2685

Scalar singlet S coupled to SM Higgs: Vcl(H,S)=−µ2|H|2+λ|H|4+λHS|H|2S2+
µ2S
2 S

2+
λS
4 S

4

yellow & grey: excluded T⋆ nucleation temp. Beniwal et al, JHEP08 (2017) 108



34Problems:

1. Gauge dependence: with this approach
vc

Tc
is not physical, as is gauge-parameter dependent

vc

Tc
=

2E

λ(Tc)
=

3− ξ3/2

48πλ

[
2g

3
+
(
g
2
+ g

′2)3/2]
+ . . . =⇒ gauge-dependent BNPC

Gauge-independent Tc in the ring resummation scheme was obtained using Nielsen identities
Patel & Ramsey-Musolf, JHEP07 (2011) 29

Gauge-dependence at 2-loop order is not known, it was investigated only in the DR theory:
– minimum of gauge dependent 2-loop eff. pot. is gauge independent M. Laine, PRD51 (1995) 4525
– mass and vertex resummation in an optimized 1-loop calculation give gauge-independent
self-energies Buchmüller & Philipsen, NPB443 (1995) 47

2. Reliability of the perturbative expansion
Based on 2-loop calculations, common consensus on perturbation theory seems to be:
– perturbative evaluation of the effective potential is problematic in the SM due the
nonperturbative magnetic mass scale and formh ≳ 70GeV (also in SM extensions for large
scalar coupling)
– the order of the phase transition cannot be reliable studied, although greater accuracy can be
achieved in the DR theory Fodor & Hebecker, NPB432 (1994) 127, Buchmüller et al., Annals Phys. 234 (1994)
260, K. Farakos et al., Nucl.Phys. B425 (1994) 67, Buchmüller & Philipsen, NPB443 (1995) 47, Kainulainen et al.,
JHEP06 (2019) 075
– in fluctuation-driven phase transitions perturbation theory can at most serve as a guidance in
exploring the parameter space, and in the context of EWBG, in pointing to those regions were
baryon number preservation is more likely.


