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Road map

I First lecture: Crash course on cosmic inflation

I First half of second lecture: Inflation from renormalization group running

I Second half of second lecture : Higgs portal inflation
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Standard Cosmology

Cosmological inflation is motivated by the shortcomings of the standard model
of cosmology. Let us first discuss the latter.

I We model the time evolution of the universe as the solution of the Einstein
equations. The solution we are interested in corresponds to a
homogeneous and isotropic universe. This is called the Cosmological
Principle. This is true for scales larger than 250 million light years.

I This solution is called the Friedmann-Robertson-Walker (FRW) metric. It
assumes a very simple form for a flat spatial curvature

ds2 = −dt2 + a(t)2dr2. (1)

I The Einstein equations give two differential equations, called Friedmann
equations governing the behavior of the scale parameter a(t).
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Important definitions (I)

The Friedmann equations are(
ȧ
a

)2

≡ H2 =
ρ

3MPl
− k

a2 and ä
a
≡ Ḣ + H2 = − 1

6MPl
(ρ+ 3p), (2)

where H is called the Hubble parameter and the density ρ and pressure p are
obtained from the stress-energy tensor. The parameter k corresponds to the
spatial curvature.

The ratio w = p/ρ is called the equation of state. If the universe is filled with a
medium comprised of multiple components, then the scale factor is going to
behave differently at different stages during the evolution of the universe.

Universe is w a(t) ρ

matter dominated 0 t2/3 a−3

radiation dominated 1/3 t1/2 a−4

dark energy/ −1 eΛt Λ
cosmological constant (Λ) dominated

Table: Summary of the equation of state parameter w, the scale factor a and density ρ in a
flat (k = 0) FRW universe in different scenarios.
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ȧ
a

)2

≡ H2 =
ρ

3MPl
− k

a2 and ä
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Important definitions (II)

It is going to be convenient to introduce a new time variable, the conformal time
τ . It simplifies the metric so that it looks like a Minkowski one:

ds2 = a2(−dτ 2 + dr2), dτ = dt/a. (3)

I
Universe is dominated by matter radiation dark energy

a(τ) τ 2 τ −1/τ

Table: The scale factor a as a function of the conformal time τ .
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Conformal diagram

Past lightcone

Future lightcone

present 

event

x

τnow

τ

Figure: Conformal diagram in the FLRW metric. It is called conformal because the time
axis t is replaced by the conformal time τ .
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The (comoving) Hubble horizon

The comoving Hubble horizon (or the radius of the Hubble sphere) is (aH)−1. If
we know the speed of an object (now) and the Hubble parameter (now), then we
can calculate its distance now from Hubble’s law.

v = Hr ⇒ r =
v
H
. (4)

Obviously, the speed of light is constant, so the maximum distance from where
we can detect light signals now is

c
H
. (5)

Most of the time we work in comoving coordinates, and thus define the
comoving Hubble radius by factoring out the effect of expansion:

c
aH

. (6)

(And during these lectures c = 1 of course.)

Universe is dominated by matter radiation dark energy
The comoving Hubble sphere grows grows shrinks

Table: The behavior of the comoving Hubble sphere for different w.
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The fine-tuning problem

The first Friedmann equation can be rewritten in the following form

H2 =
ρ

3M2
Pl
− k

a2 =⇒ 1− Ω = − k
(aH)2

(7)

Remember: k = 0 corresponds to a flat, k = +1 to a closed 3-sphere and k = +1
to an open 3-hyperboloid shape for the universe. The parameter Ω is called the
density parameter Ω = ρ/(3H2M2

Pl) and its value is measured today

Ω = 1.00± 0.02 (8)

This implies that the universe is flat k = 0. We know that (aH)−1 grows during
the regular evolution of the universe and thus k = 0 is a repulsive fixed point.
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The horizon problem

Figure: The CMB background from the Planck experiment. The red spots are the hottest,
the blue ones are the coldest sports in the CMB, yet the relative difference between them
is 10−5. It is almost perfectly homogeneous!
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The horizon problem

x

τ=0

τnow

τ

Singularity

Causally

disconnected

events

Figure: If you look up at the sky, you will see several causally disconnected patches of the
universe! Again: are the causally separated regions fine tuned to be in thermal equilibrium?
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Defining inflation

I Cosmological inflation is an era during the evolution of the universe.

I During this period of time the universe is dominated by something, which
mimics dark energy, i.e. the universe expands exponentially and the
comoving Hubble horizon shrinks.

I The cosmological inflation takes place after the Big Bang and before the
radiation dominated era of the universe.
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The horizon problem revisited

x

0>τini

τ=0

τnow

τ

Singularity

Causally

connected

events

Figure: The inflation provides extra conformal time, during which causal contact is
established!
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Anisotropy problem resolved

Let us address now the anisotropy observed in the CMB. Actually, this is the
most robust solution of cosmic inflation. We say, that the fluctuations produced
during inflation will act as seeds for the structure formation during the regular
evolution of the universe. But how?

You only need three things to keep in mind: the comoving Hubble horizon
shrinks during inflation, and expands during the regular evolution of the
universe. Lastly, the comoving wavelength of a fluctuation is constant. (This last
one comes from the literal definition of the comoving distance.)

The fluctuation eventually grows to superhorizon scale during inflation and
won’t affect the universe in any way. As the universe expands after inflation
these fluctuations eventually fall into the horizon and act as inhomogeneities.
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Anisotropy problem resolved

x

τexit

0>τini

τ=0

τentry

τ

Singularity

Fluctuation, λ=k-1

Hubble horizon, (aH)-1

Figure: See the previous slide!

Zoltán Péli 18



What can be the dynamical source of inflation?

Our first thought may be that it is Einstein’s cosmological constant Λ. However,
that cannot be the case! Matter and radiation are diluted exponentially quickly
and w = −1 forever, since Λ is also independent of time. There is no exit from
this. A positive (negative) cosmological constant dominated universe is also
called (anti) de Sitter universe.

The simplest way to have a finite inflationary epoch is by assuming that a scalar
field was coupled to gravity such that

S =

∫
d4x
√
−g
(

1
2
R +

1
2
gµν(∂µφ)(∂νφ)− V(φ)

)
(9)

It is just a singlet scalar field with canonical kinetic term.

There are a lot of other options. We are going to cover two in the second half of
the lectures.
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Relevant equations and quantities

In order to analyze the dynamics we need several pieces of information. A great
simplification comes from the homogeneity requirement of the Einstein
equations φ(~r, t) = φ(t). The equation of motion for φ takes the form

φ̈+ 3Hφ̇+ V′(φ) = 0. (10)

We can read off from the stress-energy tensor the density ρ and pressure p:

ρ =
1
2
φ̇2 + V(φ), p =

1
2
φ̇2 − V(φ) (11)

Then, the equation of state is

w =
1
2 φ̇

2 − V(φ)
1
2 φ̇

2 + V(φ)
(12)

In order to get inflation we need w ≈ −1, i.e φ̇2 � V(φ)! The potential energy
has to dominate over the kinetic energy, hence we call it slow-roll inflation.
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Stopping inflation

The Friedmann equations take the forms

H2 =
1

3M2
Pl

(
1
2
φ̇2 + V(φ)

)
, (13)

H2 + Ḣ = H2(1− ε) = − 1
3M2

Pl
(φ̇2 − V(φ)) (14)

We have introduced the most important parameter in inflation ε = −Ḣ/H2.

We
know that the Hubble horizon is shrinking during the inflationary epoch:

0 > d
dt

(aH)−1 = − ȧH + aḢ
(aH)2

= − 1
a

(1− ε). (15)

This actually gives us the clue that inflation stops when ε = 1!! Using the second
Friedmann equation we can express

ε =
1
2
M−2

Pl
φ̇2

H2 . (16)

This agrees perfectly with our requirement to have w ≈ −1: If the kinetic energy
of the field grows too large, inflation eventually stops by itself.
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Sufficient amount of inflation

We want inflation to resolve the Horizon problem, which sets a lower boundary
on the amount of expansion during the inflationary epoch. This is measured in
N = ln(aend/astart), which is called the e-folding number. Our current size of
Hubble horizon imply

N ≥ 50 (17)

Quantities observed today correspond to 60 > N > 50, depending on the
specifics of the inflationary model.

In order to secure a long enough inflationary period we prescribe

|ε̇| < 1 (18)

and obtain
ε̇

2ε H
− ε =

φ̈

φ̇ H
≡ −ηH (19)

The quantity ηH is our second slow-roll parameter. Note: we have not used any
approximations so far. The subscript H means it is expressed via the Hubble
parameter, and the negative sign is a convention.
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Visualizing inflation

ϕOBS ϕEND ϕOSC
ϕ

V(ϕ)

N∼50 ε=1 Reheating

Figure: The inflationary potential V(φ). We define Λ = ρ1/4 as the energy scale of inflation.
Zoltán Péli 23



Relation of inflationary predictions to observables

We can make observations of primordial density fluctuations. These can be
sorted to scalar fluctuations (directly related to fluctuations in the curvatureR)
and primordial gravitational waves. We call the latter tensor fluctuations.

The variance of the curvature fluctuations is usually parametrized as

∆2
R ' As

(
k
k∗

)ns−1

, (20)

where k∗ is a pivot scale dependent on the parameters of the measurement. The
Planck satellite measures

As = 2.2× 10−9, and ns = 0.964± 0.005 (21)

with the pivot scale k∗ = 0.05Mpc−1.
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Relation of inflationary predictions to observables

The variance of the tensor fluctuations is parametrized in the same way as that
of the density fluctuations

∆2
t = At

(
k
k∗

)nt
(22)

Tensor fluctuations are not observed yet. We are only able to measure an upper
bound on the ratio of the amplitude of tensor and scalar fluctuations

r =
At

As
< 0.14 (23)
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Relation of inflationary predictions to observables

Figure: Observational bounds from the Planck satellite. This is the most recent data, the
experiment ended in late 2013. The subscript refers to k∗ = 0.002 Mpc−1 , a different pivot
scale used for tensor modes.Zoltán Péli 26



Relation of inflationary predictions to observables

We have no time to derive the inflationary predictions for ∆2
R and ∆2

t . A very
good read detailing the procedure is for instance arXiv:0907.5424.

The density perturbations are proportional to the perturbations in the scalar
field. This leads to the formula

∆2
R '

1
2M2

Pl

1
ε

(
H
2π

)2

k=aH
, (24)

where k = aH means that for a fluctuation with wavelength k−1, it is evaluated at
the point when it is the size of the Hubble horizon. Note that this quantity is
model dependent due to ε! (It requires a direct assumption for the velocity of the
scalar field.)

The above formula implies the relations

As =
1

24π2
1
ε

V(φ)

M4
Pl

∣∣∣∣
φ=φOBS

(25)

(using H2 ' V/(3M2
Pl) during slow-roll) and

ns − 1 =
d ln ∆2

R
d ln k

∣∣∣∣
k=aH
' 2ηH − 4ε. (26)
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2M2

Pl

1
ε

(
H
2π

)2

k=aH
, (24)

where k = aH means that for a fluctuation with wavelength k−1, it is evaluated at
the point when it is the size of the Hubble horizon. Note that this quantity is
model dependent due to ε! (It requires a direct assumption for the velocity of the
scalar field.)

The above formula implies the relations

As =
1

24π2
1
ε

V(φ)

M4
Pl

∣∣∣∣
φ=φOBS

(25)

(using H2 ' V/(3M2
Pl) during slow-roll) and

ns − 1 =
d ln ∆2

R
d ln k

∣∣∣∣
k=aH
' 2ηH − 4ε. (26)
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Relation of inflationary predictions to observables

Inflation predicts that the variance of the tensor fluctuations are

∆2
t =

2
π2

H2

M2
Pl

∣∣∣∣
k=aH

. (27)

Note that this formula only depends on H. It does not depend on the specifics of
the inflationary model.

The tensor-to-scalar ratio is
r = 16ε. (28)

The primordial gravitational waves seem to be too faint to detect with the
presently available technology. However, that would be a triumph of
cosmological inflation. The existence of primordial gravitational waves is very
hard to explain otherwise. Fortunately, we have a chance to indirectly detect
them.

They leave a unique imprint on the polarization pattern of the CMB: the B-mode
polarization pattern. In 2014 the BICEP2 experiment reported such an
observation. Unfortunately later in 2015, the Planck experiment has shown that
galactic foregrounds (dust) are responsible for the detected B-modes.
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The slow-roll cookbook

The computations simplify significantly in the regime φ̇2 � V(φ), this is called
the slow-roll approximation

H2 ' 1
3M2

Pl
V(φ), (29)

ε ' ε =
1
2
M2

Pl

(
V′(φ)

V(φ)

)2

, (30)

ηH ' η − ε with η = M2
Pl

V′′(φ)

V(φ)
, (31)

N =

∫
Hdt ' 1

MPl

∫ φOBS

φEND

dφ√
2ε

(32)
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Tutorial

The simplest scalar potential is just a mass term.

V(φ) =
1
2
m2φ2. (33)

I Let us compute the observables ns, r and constrain m2!

I As a first step, compute ε and η.

I Find the value φEND for which inflation stops (ε = 1).

I Using N = 60, find φOBS corresponding the observed fluctuations.

I We can now simply compute ns and r by substitution.

I Use the measured value As to constrain the parameters in the potential.
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Outline

I One first needs to establish the allowed parameter space of the particle
physics model and the inflationary model.

I Then set the scale of inflation and match the predictions of the particle
physics model with the inflationary model.

I The temperature was very low during and right after inflation. During
inflation, the energy was stored as vacuum energy Λ ∼ ρ1/4. During the
reheating process this energy transfers to the production of SM particles as
the field oscillates around the minimum of the potential.

I We can use zero temperature QFT at the times when the temperature was
low.
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Renormalization scale as cosmic timescale?

I At finite temperature, the thermally corrected effective potential carries the
correct information, which can be used for instance to identify phase
transitions:

Veff(φc,T) = Vtree + Vloop + Vthermal (34)

I Generally, the thermal effects dominate over the loop contributions.
However, if one wants to keep every term, then setting the renormalization
scale to µ = T is the most sensible choice.

I Fortunately, we do not have to deal with the thermal effects, as we are
interested in a very cold era of the universe. We use the straightforward
choice and during the inflation we set µ to be the energy scale ρ1/4 of
inflation.
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Problem with the SM

The coupling strength λφ of the scalar quartic vertex of the standard model
becomes negative (at high energies) during its renormalization group flow :
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φ
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Standard model

The corresponding one-loop beta function is

β
(1)
λφ

=
1

(4π)2

(
24λ2

φ − 6c4t +
3
8
g4
Y +

9
8
g4
L +

3
4
g2
Yg

2
L + λφ

(
12c2t − 3g2

Y − 9g2
L
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Problem with the SM

I Even the most precise computations1 support this. Higher loop
calculations push the scale µ0 higher about (1011 GeV), for which
λφ(µ0) = 0.

I Considering the two-loop effective potential of the standard model, it is
unbounded from below at large field values. The tunneling rate from our
present ’false’ vacuum to the ’true’ vacuum is finite, however with lifetime
longer then the age of the universe. The universe is therefore metastable if
one considers the SM complete.

I This calls for an extension of the SM. We elaborate here an inflationary
model2 based on the particular extension3.

1G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia, Higgsmass and vacuum
stability in the Standard Model at NNLO, JHEP 08, 098, arXiv:1205.6497 [hep-ph]
2Z. Péli, I. Nándori, and Z. Trócsányi, Particle physics model of curvaton inflation in a stable universe, Phys. Rev. D
101, 063533 (2020)
3Z. Trócsányi, Super-weak force and neutrino masses, Symmetry 12, 107 (2020), arXiv:1812.11189 [hep-ph]
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Vacuum stability

I The particle content of the model coincides with that in the standard model
of particle interactions, supplemented with one complex scalar field. We
also allow for one (or more) Dirac-, or Majorana-type right-handed
neutrinos.

I In the example we are about to give, we consider a single, heavy Dirac-type
right handed neutrino.

I The extended scalar potential has the form:

V(φ, χ) = V0 − µ2
φ|φ|2 − µ2

χ|χ|2 +
1
2

(|φ|2, |χ|2)C
(
|φ|2
|χ|2

)
,

with C being the quartic coupling matrix C =

(
2λφ λ
λ 2λχ

)
.
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Vacuum stability

I The criteria for the potential to be perturbative and stable are

4π > λφ > 0,
4π > λχ > 0,

4π > |λ|,
detC = 4λχλφ − λ2 > 0, if λ < 0,

which have to be satisfied up to the Planck-scale µ = MPl.

I After spontaneous symmetry breaking the model has two vacuum
expenctation values (v and w) and two scalar particles with physical
masses Mh/H. In order to be consistent, we have to set:

v(MZ) = 246 GeV and Mh(MZ) = 125 GeV.
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Vacuum stability

I We calculate the one-loop β-functions of the model and perform the
stability analysis of the scalar potential.

I The initial conditions of the coupled system of ODE-s are given at mt and
most of them are set by measurements.

I The free initial values are

λφ(mt), λχ(mt), λ(mt), cν(mt). (35)

I Finally, we constrain the parameter space spanned by the unknown
couplings through the stability and consistency conditions.
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Vacuum stability
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Inflationary model

I What does the scalar potential imply for cosmic inflation?

I The most important difference is that we now have a multiple field
inflationary model. Actually, the multiple-field models are favored when one
attempts to make a connection with particle physics, at least because of
the vacuum stability requirement.

I We want to explore the parameter region, for which the inflationary
potential produces predictions consistent with observations.
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Multiple field inflation

I A single scalar field can only cause curvatureR fluctuations, which then
later correspond to adiabatic density fluctuations.

I In the classical trajectory of the field (dictated by the EOM) these are
fluctuations in the path length.

I For multiple fields, a new kind of perturbation appear, called isocurvature or
entropy perturbation S. Current CMB data favor adiabatic perturbations
and constrain isocurvature perturbations to be small.

I In the classical trajectory of the field, these can be pictured as fluctuations
perpendicular to the trajectory itself.

I In practice, we define an ’adiabatic field’ σ and an ’entropy field’ s (we have
ṡ = 0) and rotate the original fields (φ, χ) into (σ, s).
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ṡ = 0) and rotate the original fields (φ, χ) into (σ, s).

Zoltán Péli 41



Multiple field inflation

I A single scalar field can only cause curvatureR fluctuations, which then
later correspond to adiabatic density fluctuations.

I In the classical trajectory of the field (dictated by the EOM) these are
fluctuations in the path length.

I For multiple fields, a new kind of perturbation appear, called isocurvature or
entropy perturbation S. Current CMB data favor adiabatic perturbations
and constrain isocurvature perturbations to be small.

I In the classical trajectory of the field, these can be pictured as fluctuations
perpendicular to the trajectory itself.

I In practice, we define an ’adiabatic field’ σ and an ’entropy field’ s (we have
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Multiple field inflation

I Remember that we had relations for ∆2
R?

I It corresponds to the correlator 〈R2〉. Now we have two additional
correlators 〈S2〉 and 〈RS〉 ∝ cos ∆!

I This is going to mean that we have an additional observable quantity ∆, the
correlation angle. It appears for example in the tensor-to-scalar ratio

r = 16ε(sin ∆)2 (36)

I We can distinguish two qualitatively different scenarios: if the curvature and
entropy fluctuations are completely uncorrelated cos ∆ = 0, called the
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Multiple field inflation

I The slow-roll parameters and the formula for ns are also different for
multiple fields.

I We have

ε =
1
2
M2

Pl

(
∂φV
V

)2
multi−−→
field

1
2
M2

Pl
(∂φV)2 + (∂χV)2

V2 =
1
2
M2

Pl

(
∂σV
V

)2

(37)

I The second slow-roll parameter η proliferates.

η = M2
Pl
∂φφV
V

multi−−→
field

ηφφ, ηχχ, ηφχ, ηij = M2
Pl
∂ijV
V

(38)

(or equivalently ησσ, ηss, ησs).

I The multiple field formula for ns is very long and its derivation takes a
complete paper4.

4C. T. Byrnes and D. Wands, Phys. Rev. D 74, 043529 (2006).
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Constraining the inflationary model

I As a first guide, we look for an inflationary potential with parameters
consistent (at least in the orders of magnitude) with the RG running. For
instance λi, |λ| ∼ O(10−1 − 10−2) and µ2

i /GeV ∼ O(104) with i = φ, χ.

I In our sought after scenario the classical fields roll towards the minimum of
the potential from the origin. We solve numerically the EOMs:

φ̈+ 3Hφ̇+ ∂φV = 0, χ̈+ 3Hχ̇+ ∂χV = 0 (39)

however we transform the independent variable t to N via the relation
dN = Hdt.

I In our setting the inflation stops exclusively due to ηij getting to large while ε
is still small (ε ∼ O(10−30)).

I We can only get predictions consistent with the observations when the true
minimum of the potential is far ∼ MPl from the origin and consider the
curvaton scenario.
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Slow-roll trajectory
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Figure: Left: A possible trajectory of the rolling of the scalar fields. The black dots denote
the extrema of the potential. Right: Projection of the trajectory onto the φ− χ plane. The
red star denotes the end of inflation on the trajectory, marked with a red dot on the
three-dimensional picture.
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Constraining the inflationary model

I Because of the smallness of ε(φOBS) and cos ∆ = 1, we have

r = 0, ns − 1 = 2ηss. (40)

I The normalization condition is

V0 = r
(
1.6× 1016

)4
GeV4 (41)

unapplicable, since r = 0. This only means that we need to find an other
way to set the scale of inflation.

I We do this together with selecting the parameter region where we can
obtain large values for the minimum of the potential! The global minimum
of the potential is inversely proportional to det1/2C . Smaller detC pushes the
minimum farther away from the origin.
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A typical RG running
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The final parameter space
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Motivation

I Is it possible to have inflation in the SM? Can the Higgs field be the inflaton?

I Let us talk about tree level first at the electroweak scale.

I Naively computing the slow-roll parameters, we can establish that it is not
possible either if the field rolls from large or small values.

I Examining the SM Lagrangian, we can see that the operator H†H is a
dimension 2, Lorentz invariant operator.

I The Ricci scalar R in the EH action is also a dimension 2, Lorentz invariant
operator.

I The combination (H†H)R is therefore a renormalizable operator and can be
generated radiatively. We might as well add it to the complete Lagrangian.
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Set-up

I The relevant part of the action in unitary gauge H† = (0, h/
√
2) is

S =

∫
d4x
√
−g
(
−M2

Pl

2

(
1 + ξ

h2

M2
Pl

)
R +

1
2
gµν(∂µh)(∂νh)− U(h)

)
, (42)

I Obviously, we exclude ξ < 0 as the action may become unbounded from
below. We can also observe, that this action reduces to the SM case if√
ξh� MPl. Values ξ ∼ O(MPl/GeV) are completely excluded, so h has to

be large to see new physics.

I The factor multiplying −(M2
Pl/2)R is called the conformal factor Ω. If Ω 6= 1,

then we are in the Jordan frame. There exists a so-called conformal
transformation of the metric which transforms the action into the Einstein
frame where

Ŝ =

∫
d4x
√
−ĝ
(
−M2

Pl

2
R̂ + . . .

)
, (43)

where the quantities in the Einstein frame are denoted with an overhat.
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Set-up

I The Jordan and Einstein frames are physically equivalent, although the
inflationary dynamics are manifest in the Einstein frame.

I The conformal factor is Ω2 = 1 + ξh2/M2
Pl and the relevant part of the

action is

Ŝ =

∫
d4x
√
−ĝ
{

ĝµν

2

(
3
2
M2

Pl

Ω4 (∂µΩ2)(∂νΩ2) +
1

Ω2 (∂µh)(∂νh)

)
− 1

Ω4 U(h)

}
.

(44)

I We need to introduce a canonical field χ, for which this action takes the
form

Ŝ =

∫
d4x
√
−ĝ
{

ĝµν

2
(∂µχ)(∂νχ)− Û(χ)

}
. (45)

Zoltán Péli 52



Set-up

I The Jordan and Einstein frames are physically equivalent, although the
inflationary dynamics are manifest in the Einstein frame.

I The conformal factor is Ω2 = 1 + ξh2/M2
Pl and the relevant part of the

action is
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Pl and the relevant part of the

action is

Ŝ =

∫
d4x
√
−ĝ
{

ĝµν

2

(
3
2
M2

Pl

Ω4 (∂µΩ2)(∂νΩ2) +
1

Ω2 (∂µh)(∂νh)

)
− 1

Ω4 U(h)

}
.

(44)

I We need to introduce a canonical field χ, for which this action takes the
form

Ŝ =

∫
d4x
√
−ĝ
{

ĝµν

2
(∂µχ)(∂νχ)− Û(χ)

}
. (45)
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Canonical field

I As we discussed earlier, for h� MPl we simply obtain the SM case, thus
χ = h.

I For large values of h (and 0� ξ ≪ MPl), namely Ω2 � 1, we have

χ =
3
2
MPl ln Ω2 (46)

I In this picture the field rolls from large values towards the the electroweak
vacuum. Thus, we have

U(h) ' λh

4
h4 during−−−→

infl.
Û(χ) =

λhM4
Pl

4ξ2
(Ω2 − 1)2

Ω4 ' λhM4
Pl

4ξ2

(
1− e−

√
2
3

χ
MPl

)
(47)

I Every other part of the SM Lagrangian is suppressed by Ω−2 (kinetic terms)
or Ω−4 (non-kinetic terms).
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Predictions of the Higgs inflation

I The predictions of this model are in excellent agreement with the
observational data

ns = 1− 2
N

= 0.967, r =
12
N2 = 0.0033, (48)

for N = 60.

I The normalization conditions introduces the constraint

ξ = 5× 104
√
λh. (49)

I The tree level value λh = 0.125 implies ξ ≈ 18000.
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Problems with the Higgs inflation

I First of all, we know that we cannot use the tree level value for the Higgs
quartic coupling. The scalar potential has to be stable at least during
inflation.

I In terms of the canonically normalized field, the operator describing the
non-minimal coupling to gravity has dimension 5 and suppressed by

Λ =
MPl

ξ
. (50)

This is interpreted as a UV cutoff. New physics appear at scales larger than
Λ! This is called the unitarity problem.

I On the other hand, the scale of inflation in terms of the Higgs field is

MPl√
ξ
. (51)

I This is problematic, since we expect new physics at scales lower than the
scale of inlation!
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Current research

I The unitarity problem does not appear for 0 < ξ ≤ 1, implying λh ≈ 10−11.

I This can be achieved by RG running in a SM extension with additional
scalar field(s), such as the one we studied earlier.

I Let us set the renormalization scale to µ = h, as it minimizes the
logarithms in the effective potential:

Ueff,tree ≈
λh(µ = h)

4
h4. (52)

I As the µ approaches hend, the field value corresponding to the end of
inflation, we enter the inflationary epoch.

I In the inflationary regime, particle processes are suppressed by the large
conformal factor and thus the RG running of λh freezes in.

I We have to do the analysis thoroughly, with multiple fields. Higgs inflation
with multiple field is called Higgs portal inflation.
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Exercise for students

1. Using the SM potential

U(h) =
λh

4
(h2 − v2)2 (53)

confirm that cosmological inflation is impossible either if the field rolls from
h = 0 towards v or from h� v towards v. Use the slow-roll analysis and the
tree level parameters, v = 246 GeV, λh = 0.13 so that
m2

h = U′′(h = v) = 2λv2 and mh = 125 GeV. Finally, the Planck mass is
MPl = 2.4× 1018 GeV.

2. Using the potential

Û(χ) =
λhM4

Pl

4ξ2

(
1− e−

√
2
3

χ
MPl

)
(54)

of the Higgs inflation confirm the predictions shown in the lectures.
Compute the field values hEND and hOBS corresponding to the canonical
fields χEND and χOBS.
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