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Motivation: Why neutrinomasses are important?

Present bounds from [PLANCK 2018] and [KATRIN 2019]:∑
active

mν ≤ 0.12 eV, m(νe) < 1.1 eV

Experimental evidence from neutrino oscillations:

∆m2
21 = (7.42± 0.20)× 10−5 eV2, ∆m2

32
(NH)
= (2.51± 0.03)× 10−3 eV2

⇒
∑
active

mν ≥ 0.05 eV

⇒ Josu Hernández-García’s lecture

ν is the most common matter particle in the universe. Its
mass gives a small e�ect on evolution of large-scale
structure of the universe:

nν
nγ

=
3
11 ,

Ων

Ωm
≤ 1%
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Motivation: Why neutrinomasses are important?

Massive neutrinos imply indirectly the existence of massive
sterile right-handed neutrinos νR (or other new physics...)

Several BSM/GUT’s predict massive neutrinos and νR:
seesaw, le�-right symmetry, SO(10)...

16 =

(
νL dcR dcG dcB uR uG uB e+
e− ucR ucG ucB dR dG dB (νL)

c

)

Sterile ν is a natural DM candidate. ⇒ Károly Seller’s lecture

Massive neutrinos may take part in CP-violating processes,
which are needed to provide baryonic matter-antimatter
asymmetry in the universe, either via

I sterile neutrino oscillations in the early universe
[Akhmedov, Rubakov, Smirnov 1998]

I leptogenesis [Fukugita, Yanagida 1986]
⇒ Josu Hernández-García’s lecture
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Spinors and chirality

Neutrinos are light, neutral le�-chiral spin- 12 leptons.

Spinors (Cartan, 1913) are complex 4D vectors, needed to
describe the interactions of spin- 12 particles.
Dirac spinor ψ is a solution to Dirac equation, and the spinor
can be split two chiral components:

ψ =
1
2(I− γ5)ψ︸ ︷︷ ︸

≡PL

+
1
2(I+ γ5)ψ︸ ︷︷ ︸

≡PR

≡ (PL + PR)ψ ≡ ψL + ψR

PL and PR are chiral projection operators, and ψL and ψR are
eigenstates of chirality.
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Chirality and helicity

Helicity operator for spin- 12 particles is defined

h =
Σ · p
|p|

, Σ = γ5γ0γ =

(
σ 0
0 σ

)
in Dirac representation of γ-matrices.

Eigenstates of chirality (ψL and ψR) coincide for massless
particles with eigenstates of helicity (ψ− and ψ+),
corresponding to eigenvalues λh = ∓1.
In general this is not true! For low mass limit m� E

ψL ≈ ψ− +
m
E ψ+

ψR ≈ ψ+ +
m
E ψ−
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Weak interaction is maximally parity violating

Right-handed (RH) fermion has p ↑↑ S.
Le�-handed (LH) fermion has p ↑↓ S.

6 30



Active neutrinos can be right-handed

Since neutrinos are massive, we may Lorentz boost from a
frame where neutrino is LH to a frame where it is RH. For
massless particles this helicity flip is impossible.

To write the neutrino mass terms, we introduce six neutrino
spinor fields

νL ≡

νeLνµL
ντL

 , NR =

N1RN2R
N3R
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Charge conjugation

Charge conjugated neutrino fields are defined as

(νL)
c ≡ CνLT, (NR)c ≡ CNR

T
,

where C = iγ2γ0 is the charge conjugation operator in Dirac
representation.

One can see that

PL(NR)c = (NR)c, PR(νL)c = νcL
⇒ (NcR) = (Nc)L, (νL)

c = (νc)R.

Therefore we only need νL, NR and their charge conjugates to
write the neutrino mass terms.
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Dirac mass terms

L = −LLYνH′NR + h.c., LL =
(
`L
νL

)
, H′ = iσ2H∗

Weak interaction Lagrangian is written in flavour basis. We
choose a basis where the charged lepton masses coincide
with their flavour.
A�er spontaneous symmetry breaking SU(2)L⊗ U(1)Y → U(1)Q,

L′ = −Yνv√
2
νLNR + h.c. ≡ −νLMDNR + h.c., v ≈ 246.22 GeV

MD is the Dirac mass matrix, which can be diagonalized via a
biunitary transform: V†MDU = Mdiag.
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Dirac mass terms

In the new basis (mass basis),

L′ = −ν ′LMdiagN
′
R + h.c., ν ′L = V†νL, N′

R = U†NR

Defining a Dirac spinor ν ′ = ν ′L + N′
R =

ν1ν2
ν3

,
L′ = −ν ′Mdiagν ′ = −

3∑
i=1

miνiνi

Lepton number is conserved, but lepton flavour violated.
0νββ not possible: (A, Z) → (A, Z + 2) + 2e− violates L.
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Fermion mass terms in the Standard Model

Y`LLαH`Rα + YuQLiHuRi + YdQLiH′dRi

⇓ SSB

v√
2
Y`αβ`Lα`Rβ +

v√
2
YuijuLiuRj +

v√
2
YdijdLidRj

⇓ mass matrices

M` =
v√
2
Y`, Mu =

v√
2
Yu, Md =

v√
2
Yd
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Flavour problem gets worse

Yukawa couplings in the SM spans six orders of magnitude
without explanation. (Do we need explanation?)

Ye = 3× 10−6 Yµ = 6× 10−4 Yτ = 10−2

Yu = 10−5 Yc = 7× 10−3 Yt = 1
Yd = 3× 10−5 Ys = 5× 10−4 Yb = 2× 10−2

Adding just the Dirac mass terms for neutrinos introduces
disturbingly small Yukawas: Yν ∼ O(10−13). Why so small?
Exotic way out: NR wave function leaks to extra dimensions?
[Dienes et al. 1999, Arkani-Hamed et al. 2002]
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Not-so-exotic way: Majorana mass term

All SM fermions are Dirac fermions, but there is an
alternative for neutral fermions - neutrinos.

Since (νL)
c is RH, we may write a mass term for neutrinos

without postulating the NR fields:

L = − 12νLML(νL)
c + h.c.

This breaks SU(2)L⊗U(1)Y gauge invariance, but we will fix
this problem later.
A symmetric matrix ML may be diagonalized via a unitary
transformation: UTMLU = Mdiag.
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Majorana mass term

In the new basis (mass basis again)

L = − 12ν
′
LM(ν

′
L)
c + h.c., ν ′L = UTνL, (ν ′L)

c ≡ Cν ′L
T

Defining a Majorana spinor ν ′ ≡ ν ′L + (ν ′L)
c =

ν1ν2
ν3

, which
satisfies Majorana condition (ν ′)c = ν ′, that is, neutrinos are
their own antiparticles (Majorana, 1937).

L = − 12ν
′
LMdiag(ν

′
L)
c + h.c. = − 12

3∑
i=1

miνiνi

Factor 1
2 accounts for the fulfillment of Dirac equation for νL.
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Dirac vs Majorana

In a minimal model, to only add the neutrino masses and
nothing else:

Dirac Majorana
Neutrino oscillations Yes Yes

0νββ No Yes
CP violating phases 1 3
Sterile neutrinos Yes No

Gauge invariance broken No Yes!
Lepton number broken No Yes, ∆L = 2
Lepton flavour broken Yes Yes

Renormalizable Yes Yes
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d = 5 effective operator (Weinberg, 1979)

L(5)

Λ
=
1
2 f LLαH

′(H′)T(LLβ)c + h.c., H′ = iσ2H∗

The only gauge invariant dimension-5 operator which can be
constructed from SM fields produces the Majorana mass
term a�er spontaneous symmetry breaking:

L′

Λ
= − 12νLML(νL)

c + h.c., ML =
1
2 fv

2

Λ is the cuto� scale and f neutrino coupling matrix.
Higher-dimensional operators exist for neutrino masses, but
will not be covered here. Why?
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There are O(100) different possiblities!

Number of possible e�ective operators increases if higher
dimensions are allowed. Assume coupling matrix fij = O(1).

Picture: André De Gouvêa, Annu. Rev. Nucl. Part. Sci. 2016. 66:197217.
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Theory is not renormalizable!

When we include Weinberg operator...

Dirac Majorana
Neutrino oscillations Yes Yes

0νββ No Yes
CP violating phases 1 3
Sterile neutrinos Yes No

Gauge invariance broken No No
Lepton number broken No Yes, ∆L = 2
Lepton flavour broken Yes Yes

Renormalizable Yes No!
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Seesaw mechanisms work at tree level

Type I: add gauge-singlet
fermions.

I one NR: only one massive
SM neutrino. No!

I two NR: minimal seesaw,
m(ν1) = 0. Possible.

I three NR: vanilla seesaw.
Most commonly used.

Type II: add scalar triplet
∆ = (∆++,∆+,∆0) ∼ (3, 2)
Type III: add fermion triplet
Σ = (Σ+,Σ0,Σ−) ∼ (3,0)

MR
νL

H
H

νL

νR νR

να

νβ

φ

φ

∆0

MΣ
νL

H
H

νL

Σ
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Type I seesaw mechanism

[Fritzsch, Gell-Mann, Minkowski 1975; Minkowski 1977; Yanagida 1979; Glashow 1979;
Gell-Mann, Ramond, Slansky 1979; Mohapatra and Senjanoviç 1979

Use both Dirac and Majorana mass terms and NR.

L = −LLYνH′NR−
1
2NRMR(NR)c︸ ︷︷ ︸
gauge invariant!

+h.c.

A�er SSB, we may construct the full 6× 6 mass matrix:

Lm = − 12((νL)
c, NR)

(
0 MD
MT
D MR

)(
νL

(NR)c

)
+ h.c.

Once we block-diagonalize the mass matrix, we obtain in
leading order

mν = −MDM−1
R MT

D = −v
2

2 YνM
−1
R YTν , MN = MR
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Natural Type-I seesaw mechanism

If we avoid flavour problem
(Yij ∼ 1), then we need the RH
neutrinos NR to be extremely
heavy: MN = O(1015) GeV, near
GUT scale.
⇒ no hope for direct detection

mν = −v
2

2 YνM
−1
R YTν

Y∼1
≈ 0.01 eV× 1015 GeV

MR

Hierarchy problem gets worse: Higgs mass gets a large
one-loop correction.

δM2H = −eig(Yν)2
8π2

(
Λ2 +M2Ni ln

M2Ni
Λ2

) H H

νR

LL
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Low-scale Type-I seesaw mechanism

However the seesaw mechanism works also for lower scales,
even though there is no theoretical justification for choosing
such a scale.

The mixing between active and sterile neutrinos is
characterized by active-sterile mixing matrix, which can be
obtained from mass matrix block-diagonalization:

U`i = MDM−1
R =

v√
2
YνM−1

R

⇒ |U`i|2 =
mν`

MNi
= O(10−11)GeVMNi

This value acts as an approximate lower bound for the
simplest seesaw case.
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Different seesaw scales for different problems

1015 GeV · · · · · ·• Natural scale.

TeV · · · · · ·• LHC scale.

GeV · · · · · ·• Meson and Z decays.
νMSM scale.

MeV · · · · · ·• Pion and kaon decay
peak searches.

keV · · · · · ·•
β decay kink searches.
Sterile neutrino dark
matter.

eV · · · · · ·• Neutrino oscillation
anomalies.
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Sterile neutrino production

If Mmeson > MN +m`, sterile neutrino N is produced like an active
neutrino, but the rate is suppressed by |U`i|2.

νe

e

Uei

N

π

π → e+ N

νe

e

Uei

N

K

K → e+ N

νµ

µ

Uµi

N

K

K → µ+ N
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Example: π− → e−νe at rest

e−

νe

π−

Γ(π− → e−νe) =
G2Ff 2π cos2 θcm3

π

8π

(
me

mπ

)2(
1− m2

e
m2

π

)

Pion has spin 0, so e− and νe must have opposite
spins. At limit mν ≈ 0, νe is purely RH and
therefore has positive helicity, so e− must be LH.
Due to conservation of angular momentum, e−
must also have positive helicity, but

ψL ≈ ψ− +
me
E ψ+

Helicity suppression.
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Example: π− → e−N at rest

νe

e−

Uei

N

π−

Γ(π− → e−N) = Γ(π− → e−νe)|Uei|2
(
MN
me

)2

Being massive, sterile neutrino has both
helicities. Therefore the electron will not be
helicity suppressed, and there will be a peak on
the pion decay spectrum. Similar searches can
be done with kaon decays.
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Bounds on νe-sterile mixing strength

Plot: Alekhin et al., Rep. Prog. Phys. 79 (2016) 124201
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Bounds on νµ-sterile mixing strength

Plot: Alekhin et al., Rep. Prog. Phys. 79 (2016) 124201
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Bounds on ντ-sterile mixing strength

Plot: Alekhin et al., Rep. Prog. Phys. 79 (2016) 124201
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In conclusion of this lecture

Neutrinos are weakly interacting, very light, spin- 12 ,
flavour-oscillating elementary particles.

Chirality and helicity coincide for massless particles.
Dirac and Majorana mass terms can be combined to produce
light neutrino masses via seesaw mechanism, which utilizes
gauge-singlet heavy sterile Majorana neutrinos.
Low-scale seesaw implies sterile neutrinos at mass range
available for several di�erent experimental approaches.
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Thank you for you attention!


