Particle Hunters' Guide: how to discover or exclude a BSM model at the LHC

Márton Bartók^{1,2}, Péter Major², Gabriella Pásztor²

¹Wigner RCP, Budapest

²MTA-ELTE Lendület Particle and Nuclear Physics Group, Eötvös University, Budapest

ELFT Winter School 2021

BSM analysis at the LHC CMS

Outline

- Introduction & signal models
- 2 Pyhsics objects and trigger
- 3 Example analysis
 - 4 Background estimation methods
- 5 Validation
- 6 Systematic uncertainties
 - 7 Results and interpretation
- 8 Summary

Disclaimer: only SUSY analysis showed here, but generally true for any BSM search

Motivation

Physics processes at LHC

- SM physics well understood
- New physics processes (assumed to be) rare, typically buried under large backgrounds
- SUSY gluino pair production @13TeV $\approx 10^{-6} nb \ (m_{\widetilde{g}} = 2 \text{ TeV})$

Ideal theory according to an experimentalist...

- Distinctive final state
- Easy/possible to simulate (i.e. MC generator exists)
- Only few model parameters
- Varying parameters does not (drastically) change final state
- \bullet Provable/falsifiable with available data (eg. $\approx 300~fb^{-1}$ at LHC, or 3000 fb^{-1} at HL-LHC)
- (Hopefully realized in nature...)

In practice...

- Choose a viable final state based on the prediction of a (few) model(s)
- Make the analysis as general as possible (quasi model-independent)
- Find models with similar final states and interpret the results in them

Quick introduction to SUSY

- Symmetry between fermions and bosons
- SUSY particles not seen at low energy \rightarrow supersymmetry broken
- Breaking of the symmetry
 - Supergravity
 - Gauge Mediated
 - Supersymmetry Breaking
 - ullet In general: pprox 100 extra free parameters
 - Constrained Minimal Supersymmetric Standard Model: 5 parameters
 - Phenomenological MSSM: 19 parameters
 - etc...

So many versions, variations. Need to simplify for experiment!

- Simplified models: bridge between theory and experiment
- Assume a low number of new particles and interactions (others e.g. assumed to have high mass)
- Few physics parameters
 - Particle masses
 - Production cross-sections
 - Branching fractions (BRs)
- Cross-section x BR limits apply to general models with same (similar) final state topology

$$\begin{array}{l} \widetilde{\mathbf{g}} \xrightarrow{100\%} \widetilde{\chi}_2^0 + q + \overline{q}, \ \widetilde{\chi}_2^0 \xrightarrow{100\%} \widetilde{\chi}_1^0 + Z \\ m_{\widetilde{\chi}_1^0} = 1 \ \text{GeV}, \ m_{\widetilde{\chi}_2^0} = m_{\widetilde{g}} - 50 \ \text{GeV} \\ \rightarrow \mathbf{1} \ \text{free parameter:} \ m_{\widetilde{g}} \end{array}$$

CMS detector

M. Bartók, P. Major, G. Pásztor

BSM analysis at the LHC CMS

02.02.2021 7 / 40

Imperfect reconstruction

- Need to define each object (leptons, photons, jets...)
- Higher purity definitions \rightarrow lower statistics
- Usually 3 standard working points, with increasing purity (loose, medium, tight) and decreasing efficiency
- Different reconstructed objects can overlap → decide object priority order and remove overlap

Photon recontruction ROC curve

bean

miss p,

Negative vector sum of

Definition

•
$$\vec{p}_T^{miss} = -\sum_i \vec{p}_T^i$$
 (i=all objects)

Missing transverse momentum \vec{p}_{T}^{miss}

• magnitude: $p_T^{miss} = |\vec{p}_T^{miss}|$

transverse momenta of all reconstructed objects \rightarrow underlying deriving jet

muo

Important quantity for BSM searches In SM: (should) only come from neutrinos In reality: it also comes from mis-measured jets, etc.

Note: missing E_T (MET or E_T^{miss}) is a misnomer, but sometimes it's still used

Different jet algorithms

- Standard jet (AK4): anti-*k_T* algorithm with *R* = 0.4
- Fat jet (AK8): anti-k_T algorithm with R = 0.8 →used to reconstruct boosted objects

- AK8 jet, $p_T^{AK8} > 200 \text{ GeV}$
- $70 < m_{jet} < 100$ GeV, consistent with m_Z

CMS Trigger system

LHC collisions every 25ns \rightarrow 40 million bunch crossing per second Impossible to fully process or store

- Trigger = real-time event selection
- Event not triggered \rightarrow lost forever
- Shrink event rate to \approx kHz range
- Select only "interesting" events
- Design triggers before data taking

Trigger rate allocated to each physics

group

三日 のへの

Choosing the trigger for an analysis

CMS

Important decision

- Choose "loosest" unprescaled trigger (eg. lowest pT threshold)
- Possible to use OR of triggers
- Trigger object reconstruction is somewhat different from "offline" object

Trigger efficiency measurement in data

- Orthogonal trigger
- Tag-and-probe method

BSM analysis at the LHC CMS

Toy model for a BSM search in this talk

Signal model

- Consider 1 simplified signal model
- Only $m_{\widetilde{g}}$ is free parameter Fixed: $m_{\widetilde{\chi}_1^0} = 1$ GeV, $m_{\widetilde{\chi}_2^0} = m_{\widetilde{g}} - 50$ GeV

Final state

- $\Delta m(\widetilde{g},\widetilde{\chi}^0_2)$ is small \rightarrow only soft jets from $\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}^0_2$ decay
- $\Delta m(\widetilde{\chi}_1^0,\widetilde{\chi}_2^0)$ is large \rightarrow highly boosted Z bosons
- High p_T^{miss} from $\widetilde{\chi}_1^0$

Analysis strategy: identify highly boosted $Z \rightarrow q\overline{q}$ in high p_T^{miss} region

137 fb⁻¹ (13 TeV)

QCD multijet m(g) = 1300 GeV

---- m(ã) = 1700 GeV

Hadronic baseline selection

>) 1600 1800 2 p^{miss} [GeV]

W+jets Sinale t

1000 1200 1400 1600

Study simulation

Generate signal MC with full detector response

- Look at many variables and compare their distributions to SM MC
- Define dominant backgrounds
- Find important discriminating variables to suppress these backgrounds

Main backgrounds in this case

• $Z/W/t\bar{t}$ + jets: p_T^{miss} from u and unreconstructed lepton

• QCD: p_T^{miss} from mismeasurement of jets

Choice of trigger: p_T^{miss} (> 120 - 140 GeV) (single photon trigger used for Validation Region)

CMS Simulation

Z+iets

Other SM

Events / bin

10³

10²

10

400

800

Analysis selections

Variable definitions

- $H_T = \sum_{jets} |\vec{p}_T|$
- $\vec{H}_T^{miss} = -\sum_{jets} \vec{p}_T$

Baseline cuts

- $N_{jet} \ge 2$, $H_T > 400$ GeV
- $p_T^{miss} > 300 \text{ GeV} \rightarrow \text{fully on trigger plateau}$
- $\Delta \phi(jet, \vec{H}_T^{miss}) > 0.5(0.3)$ leading (subleading) \rightarrow suppress QCD
- Lepton & photon veto
- $m_T > 100$ GeV $(p_T^{miss}$, any isolated tracks) ightarrow suppress W
 ightarrow l
 u

More complex selection variables and methods are also used in BSM searches (e.g. usage of machine learning)

• $\Delta \phi(\textit{obj}_1,\textit{obj}_2)$ – azimuthal angle between two objects

• transverse mass: $m_T(\vec{p}_T^{miss}, \text{isolated track}) = 2p_T^{miss}p_T^{track}[1 - \cos \Delta \phi(\vec{p}_T^{miss}, \vec{p}_T^{track})]$ $m_T \approx m_X$, when X→invisible + track

- Signal Region (SR): most of the signal expected here – blinded until analysis approval
- **Control Region**(s) (CR): background rich, used for background estimation
- Validation Region(s) (VR): orthogonal region used to validate background estimations

In this case:

- SR: **2 Z candidates**, with $70 < m_{jet} < 100 \text{ GeV}$ -Subdivided into 6 bins according to p_T^{miss}
- Mass SB CR: leading Z candidate mass in side band
- p_T^{miss} CR: both Z candidates' mass in side band
- VR (not shown here): require 1 lepton or photon (instead of veto)

M. Bartók, P. Major, G. Pásztor

BSM analysis at the LHC CMS

x-y: m_{jet} of the 2 Z boson candidates

02.02.2021

16 / 40

CMS

Fully data-driven - the good

- Prediction from combination of different control regions
- Independent of the quality of physics model and detector simulations
- Can be limited by statistics
- \bullet Not possible in most cases without some MC input \rightarrow goto: the ugly

Simulation – the bad

- Take into account all imperfections of MC
 - $\bullet~\text{Data}/\text{MC}$ corrections \rightarrow extra systematic uncertainties
- Often MC is not reliable on the edges of the "phase space"
- Simulation is always there
 - Some backgrounds are very hard (or impossible) to estimate from data
 - If the MC is trustworthy, it's easier to use
- Statistics can be increased if needed but computing time is limited

Data & simulation - the ugly

- Probably the most frequent method
- Less affected by the drawbacks of simulations

Estimate all background with a fully data-driven method

- Mass SB CR: Fit m_{jet} distribution and interpolate → B_{norm} = total number of background events in SR
- p_T^{miss} CR: Look at p_T^{miss} distribution shape \rightarrow normalise integral to match \mathcal{B}_{norm}
- Use this normalised distribution as background prediction

Assumptions

- good fit of m_{jet} distribution
- m_{jet} and p_T^{miss} uncorrelated
 - i.e.: p_T^{miss} shape looks the same in CR and SR

x-y: m_{jet} of the 2 Z boson candidates

Mass SideBand CR

- Background smoothly falling under *m_{jet}*
- Fit with linear function (difference of higher order fits used for systematic uncertainty)
- Interpolation of fit $\mathcal{B}_{norm} = 325 \pm 15$

Shape of p_T^{miss} (6 bins)

- Normalization factor for p_T^{miss} CR: $\mathcal{T} = \frac{\mathcal{B}_{norm}}{\sum N^{CR}} = 0.198 \pm 0.009$
- Bkg est. in each p_T^{miss} bin: $\mathcal{B}_i = \mathcal{T} N_i^{CR}$

Few commonly used methods

- Two uncorrelated variables
- Signal = "D" region
- ABC regions rich in background

•
$$N(A)/N(B) = N(C)/N(D) \rightarrow N(D) = \frac{N(B)N(C)}{N(A)}$$

Variable 1

In practice: often derive correction for correlation from simulation

More sophisticated versions exist using simultaneous fits of signal and background

Data-driven: tag-and-probe method

- Z Probe
- Based on the decay of resonances to particle pairs (e.g. J/Ψ, Υ, Ζ)
- Tag: well reconstructed triggered object
- Probe: loose selection, pass/fail the criteria for efficiency measurement
- Invariant mass of tag+probe consistent with resonance: $m_{TP} \approx m_X$

• • • • • • • • • • • • •

Data-driven: tag-and-probe method

- Measures the detection efficiency
- Fit and subtract side-bands then fit peak(s)

BSM analysis at the LHC CMS

Electron faking a photon ($e \rightarrow \gamma$)

- Use $Z
 ightarrow e^+ e^-$
- Tag: tight electron identification with trigger matching (e)
- Probe:
 - a) photon identification (γ)
 - b) fake photon (electron like photon) (f)
- Fake rate: $f_{(e \rightarrow \gamma)} = \frac{N(Z \rightarrow e\gamma)}{N(Z \rightarrow ef)}$
- Apply fake rate to fake photon CR

•
$$N(SR) = N(CR) \cdot f_{(e \to \gamma)}$$

Semi data-driven: transfer factor from MC

Control Region and transfer factor

- Define a CR by inverting a cut
- Calculate transfer factor in MC $TF^{MC} = N^{MC}(SR)/N^{MC}(CR)$
- Apply transfer factor in data $N^{Est.}(SR) = N^{Data}(CR) \cdot TF^{MC}$

Example: lost lepton (not reconstructed)

- SR: lepton veto, CR: require lepton(s)
- In MC: require a truth lepton (both SR & CR)
- TF^{MC} : probability of not reconstructing a lepton
- Apply transfer factor in data

Going back to the boosted Z search

M. Bartók, P. Major, G. Pásztor

BSM analysis at the LHC CMS

02.02.2021 26 / 40

Analysis still blinded: can't look at signal region!

- Redo background estimation with MC
- Compare predicted events to observed events
- Prediction in agreement with background yield

Relative difference taken as a systematic uncertainty on the shape (1-20%)

Check $p_T^{miss} - m_{jet}$ correlation in MC

2 main Bkgs: $Z \rightarrow \nu \nu$ and $W \rightarrow I \nu$ (including $t \bar{t}$)

- p_T^{miss} distributions, normalised to 1
- SR and p_T^{miss} CR is consistent

Check $p_T^{miss} - m_{jet}$ correlation in data

 p_T^γ treated as p_T^{miss} (Z o
u
u); "SR" means here: photon+SR or lepton+SR

- SR/CR is consistent
- Fit ratio with constant and linear function
- $\bullet\,$ Difference of fits \to systematic uncertainty on shape

M. Bartók, P. Major, G. Pásztor

BSM analysis at the LHC CMS

For MC (affects only signal in this analysis):

- \bullet Different efficiency or resolution in Data/MC \rightarrow SF for almost every reconstructed object
- Corrections for event generator (e.g. initial state radiation modeling) For data:
 - Few object corrections (e.g. jet energy correction)
 - Detector or data taking issues (something happens every year)

Example: CMS Hadron calorimeter sector failure in 2018

- Power interruptions by false fire alarm
- 2 sectors (40 degree section) could no longer be operated
- Affects 65% of data taken that year

In general

- ullet Redo analysis with corrections modified by $\pm 1\sigma$
- Check relative difference wrt nominal event yields

Examples

- Trigger, reconstruction and identification efficiencies (and their Data/MC scale factors)
- Energy and momentum scales (eg. muon p_T , jet E_T , ...)
- Luminosity determination
- Theory (e.g. cross sections)

• etc.

Systematic uncertainty on background estimation method

- Quantify how "robust" the estimation
- Important (and difficult) part of background estimation
- No clear rules how to calculate
- Examples on slides 19, 27, 29

Source of uncertainty	Effect on yields (%)	norm. or shape
Uncertainties in the background predictions		
Fit, normalization	3.3	norm.
Fit, shape	3.4	norm.
$m_{\rm jet}$ CR statistics	3-100	shape
MC closure	2-13	shape
Data validation	2–30	shape
Uncertainties in the signal yields		
Integrated luminosity	2.3-2.5	norm.
Trigger efficiency	2.0	both
Isolated lepton and track vetoes	2.0	norm.
Jet quality requirements	1.0	norm.
ISR modeling	1–2	both
$\mu_{ m R}$ and $\mu_{ m F}$ scales	0.2-0.5	both
JEC	2–4	both
JER	5–6	both
MC statistics	1–2	both
$m_{\rm jet}$ resolution	1–3	norm.

M. Bartók, P. Major, G. Pásztor

02.02.2021 32 / 40

Results in Signal Region

- Background prediction with stat. and syst. errors
- Unblinding: observed data points
- Data consistent with bkg prediction

• Background expectation of N_{bkg} , Signal expectation (from MC) of S If only background \rightarrow how much can we constrain signal strength?

- Depends on uncertainties $N_{bkg} = 100 \pm 1$, $S = 20 \pm 1$ vs. $N_{bkg} = 100 \pm 10$, $S = 20 \pm 10$
- Statistical hypothesis testing is performed using CLs test statistics
- Family of signal models described by a continuous variable (e.g. m_{g̃}) → expected upper limit on pp → g̃g̃ cross section

 σ_{theory} crosses expected curve \rightarrow expected excl. limit on $m_{\widetilde{\sigma}} \approx 2$ TeV

After unblinding (look at observed data)

- Excess of data? Consistent with background? How significant?
- Statistical hypothesis testing done taking observed data into account

Exclusion at 95% significance level can "fail" due to

- Large excess in one or more bins
- Large uncertainties
- Too small signal

 σ_{theory} crosses observed curve ightarrow observed excl. limit on $m_{\widetilde{g}} pprox$ 1.9 TeV

Unfortunately no BSM plots here...

Last big discovery: the Higgs boson in 2012 (predicted in 1964) Patience is part of the game...

CMS

This search considers 9 simplified models...

No significant excess in any of the bins

Interpretation of results CMS-SUS-19-008

Both $m_{\widetilde{g}}$ and $m_{\widetilde{\chi}_1^0}$ are free parameters

- 2-dimensional exclusion curve
- colour scale: upper limit on SUSY cross section
- $m_{\widetilde{g}}$ excluded up to 1.3 1.7 TeV

In other models: $m_{\tilde{g}}$ excluded up to 2.1 TeV $m_{\tilde{t}}$ and $m_{\tilde{b}}$ excluded up to 0.9 TeV

Example of a BSM search analysis shown

- Exclude/discover BSM theory is not easy
- Many complicated theory models exist
- Experimental aspects are challenging
- Complex Monte Carlo tools needed
- No sign of BSM in any of the searches

But there is hope!

- Analysises are getting more sophisticated
 - E.g. boosted boson tagging
- There are searches for every "corner of phase space"
- $\bullet\,$ If new physics can be discovered at LHC $\rightarrow\,$ it will be discovered

Backup slides

M. Bartók, P. Major, G. Pásztor

BSM analysis at the LHC CMS

02.02.2021 1/3

표 ▶ < 표

三日 のへの

Ensure high quality data-taking

- Efficient detectors (regular calibrations, monitoring, tests)
- Minimize downtime (not taking data while LHC is colliding)
- Data acquisition (DAQ)
- Trigger system
- Data quality monitoring
- Luminosity measurement
- etc...

Data reconstruction

- Tracking
- Particle flow
- Physics objects (μ , e/γ , au, jets, b-tagging, p_T^{miss})
- MC
- etc...

Every author of CMS has to dedicate $1/3\ \text{of their}$ work to these kind of

"central tasks"

M. Bartók, P. Major, G. Pásztor

Bkg estimation: simulation with correction from data

- Control Region: derive data/MC scale factors (SF)
- Apply SF to MC in Signal Region

Example: fit MC to data

- Template fit 2 different MC SFs to best describe data in CR
- Use the SFs in SR to correct MC

