Hints for new physics from SM precision measurements: experimental investigation of vector boson scattering

Gabriella Pásztor
ELTE TTK Institute of Physics

Physics beyond the Standard Model: Modern Approaches
ELFT Winter School, ELTE, Budapest, 1-5 Feb 2021

Most material was taken from https://indico.cern.ch/event/980773/overview

Winter 2021 topical meeting on VBS: VBS at Snowmass

25-29 January 2021
Gabriella Pasz... You are viewing Pietro Govoni's screen

acknowledgements

- to the organisers and to the speakers!

Ilaria Brivio, Diogo Buarque Franzosi, Michele Gallinaro, Pietro
Govoni, Joany Manjarres, Kristin Lohwasser, Raquel Gomez Ambrosio, Gabriela Pasztor, Richard Ruiz, Marco Zaro

(8)
VBSCan: a EU-funded experiment + theory working group targeting VBS studies

Everybody is welcome to join: just drop me an email (pietro govoni@unimib.it) and visit our website:
https://vbscanaction.web.cern.ch

In particular, thanks for the slides of the following colleagues

- Ansgar Denner (theory)
- Joany Manjarres (ATLAS)
- Kenneth Long (CMS)
- Kristin Lohwasser (ATLAS)
- Flavia Cetorelli (CMS)

Slides marked by

```
BONUS
```

only for people interested In more technical details

VV scattering: a probe of EWSB

Vector boson scattering is „intimately" connected to EWSB and new physics

- In SM, unitarity in VV scattering is restored by Higgs exchange: $\sigma^{\sim} \mathrm{O}\left(\mathrm{E}^{2}\right)-\mathrm{O}\left(\mathrm{E}^{2}\right) \rightarrow \mathrm{O}\left(\mathrm{E}^{0}\right)$
- If HVV coupling is not exactly the SM value, unitarity is not realized $\left[\sigma^{\sim} \mathrm{O}\left(\mathrm{E}^{2}\right)\right]$ or „delayed" until a new high-mass state enters
Even if no new physics is observed directly (finite energy reach, large backgrounds), VV scattering can reveal its existence

SM gauge bosons:

Higgs:

New scalar (or new gauge boson):

Why Vector Boson scattering is interesting?

- Example: Cross-section or longitudinal $W_{L^{\prime}}+W_{L^{-}} \rightarrow W_{L^{+}}+W_{L^{-}}$scattering

Can we measure the longitudinal component alone?

Why Vector Boson scattering is interesting?

Need to find a variable boson scattering

Testing the electroweak sector and EW Symmetry Breaking
 ATLAS

$\sqrt{s}=13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$

Testing the electroweak sector and EW Symmetry Breaking

So far compatible with the SM, but still limited by with the sM, but still
statisticsi
atLas
$\sqrt{\mathrm{s}}=13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$ $W^{ \pm} W^{ \pm} \mathrm{jj}$ EW
\rightarrow Data - Background
$W^{ \pm} W^{ \pm}{ }^{\mathrm{j}} \mathrm{j} \mathrm{EW}$ in the SM

Challenge: very low cross-sections

Diboson cross-sections: $\Delta \sigma \gtrsim 4 \%$

September 2020
CMS Preliminary

EW qqVV cross-sections: $\Delta \sigma \gtrsim 14 \%$

- Run 1:
- Discovery of the Higgs boson
- exclusion limits for new physics models
- Run 2:
- Study of properties of the Higgs boson
- precisemeasurements o standard-candle processes (Drell-Yan, tt, VV) ...)
- measurement of new SM processes(ttH, VBS, VVV)...)
- further exclusion limits for new physics models
- Run 3 and beyond:
- mproved precision tests of SM processes and parameters
- measurement of turther new SM processes
- discovery of New Physics?

Precise theoretical predictions needed to match improved experimental accuracy!

Physics issues of vector-boson scattering (VBS): ($V=\mathrm{W}, \mathrm{Z}$)

- key process to test electroweak symmetry breaking Higgs boson crucial for unitarity of process
- search for anomalous quartic-gauge-boson couplings sensitivity grows with energy of gauge bosons
Improvement of experimental precision

Integrated Luminosity	36 fb	150 fb	300 fb	$3000 \mathrm{fb}-$
Year	2016	2019	2022	2038
EW(VBS) $W \pm W \pm$	20\%	10\%	7\%	2\%
EW (VBS) 27	35\%	18\%	13\%	6\%
EW (VBS) Wz	35%	18\%	13\%	6\%

Jakob Salfeld-Nebgen in https://indico.cern.ce/event/711256

Final state: $V V+2 \mathrm{j} \quad(4 l+2 \mathrm{j})$

- Full electroweak (EW) process [$\mathcal{O}\left(\alpha^{4}\right)$ for stable V s] not separable from VBS
- QCD process [$\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{2}\right)$ for stable $\left.V \mathrm{~s}\right]$ gauge-invariant contribution
- interferences between EW and QCD contributions
[$\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{3}\right)$ for stable $V \mathrm{~s}$]
appear only for channels with identical or weak-isospin partner quarks
- gluonic channels for neutral final states
- irreducible background can be suppressed by cuts on M_{jj} and $\left|\Delta y_{\mathrm{jj}}\right|$ $\sigma_{\mathrm{EW}}^{\mathrm{W}+\mathrm{W}^{+}} \sim 10 \sigma_{\mathrm{QCD}}^{\mathrm{W}+\mathrm{W}^{+}}, \quad \sigma_{\mathrm{EW}}^{\mathrm{W}^{+} \mathrm{Z}} \sim 0.25 \sigma_{\mathrm{QCD}}^{\mathrm{W}^{+} \mathrm{Z}}, \quad \sigma_{\mathrm{EW}}^{\mathrm{ZZ}} \sim 0.1 \sigma_{\mathrm{QCD}}^{\mathrm{ZZ}}$

LO: pure EW diagrams $\mathcal{O}\left(e^{6}\right)$ and diagrams with gluons $\mathcal{O}\left(e^{4} g_{\mathrm{s}}^{2}\right)$
NLO: EW and QCD corrections to both types of diagrams
at level of cross section:

Virtual diagrams mix QCD and EW corrections:

- EW correction to LO QCD amplitude
- QCD correction to LO EW amplitude

\Rightarrow QCD and EW corrections mix at $\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right)$ and $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{5}\right)$ QCD and EW corrections cannot be separated in general possible in VBS approximation (neglects interferences)

Vector-boson scattering (VBS) topologies: $\mathcal{O}\left(g^{6}\right)$ all t channel

irreducible background to VBS:

EW background $\mathcal{O}\left(g^{6}\right), s$ channel

t channel: incoming quarks/antiquarks connected to outgoing quarks/antiquarks u channel: exchange identical quarks/antiquarks in final state s channel: incoming quark and anti-quark connected, all boson propagators time like VBS approximation: only t and u channel, no interferences (see slides 22-23)

Calculations for VBS within the SM

- all processes known at NLO QCD accuracy matched to PS
- in VBS approximation (no s channel, no interferences)
- for both QCD-/EW-induced process
- all available in VBFNLO (apart from QCD-induced $\mathrm{W}^{+} \mathrm{W}^{-}$)
- all available in Powheg-Box (\Rightarrow PS matching)
- possible to generate in MG5_AMC@NLO or SHERPA
- NLO EW corrections known for $\mathrm{W}^{+} \mathrm{W}^{+}$, WZ, and ZZ ($\mathrm{W}^{+} \mathrm{W}^{-}$in progress)
- full NLO computation only available for $\mathrm{W}^{+} \mathrm{W}^{+}$(ZZ in progress)
- no NNLO results known

Matching higher order calculations and parton shower

Higher Order

good perturbative accuracy, accurate inclusive cross-sections, but limited to low multiplicity and parton level only

Parton shower:

less accurate, but realistic description, including multi-parton interactions, resummation, hadronization effects

Matching higher order calculations to parton shower (deserves a lecture of its own $)$)

Higher Order

good perturbative accuracy, accurate inclusive cross-sections, but limited to low multiplicity and parton level only

Parton shower:

less accurate, but realistic description, including multi-parton interactions, resummation, hadronization effects

- full LO predictions: Ballestrero, Franzosi, Maina '10 (PHANTOM)

NLO QCD separately for EW $\left(\mathcal{O}\left(\alpha^{6}\right)\right)$ and QCD-induced production $\left(\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{4}\right)\right)$

- NLO QCD corrections to EW production in VBS approximation:

Jäger, Oleari, Zeppenfeld (+ Bozzi) '06, '07, '09 (VBFNLO);
Denner, Hošeková, Kallweit '12
PS matching: Jäger, Zanderighi '11, '13 + Karlberg '14 ($\left.\mathrm{W}^{+} \mathrm{W}^{+}, \mathrm{W}^{+} \mathrm{W}^{-}, \mathrm{ZZ}\right)$ Rauch, Plätzer '16 ($\mathrm{W}^{+} \mathrm{W}^{-}$), Jäger, Karlberg, Scheller '18 (WZ)

- NLO QCD corrections to QCD production:

Melia, Melnikov, Röntsch, Zanderighi '10, '11 ($\mathrm{W}^{+} \mathrm{W}^{+}$); Greiner et al. '12 ($\mathrm{W}^{+} \mathrm{W}^{-}$); Campanario, Kerner, Ninh, Zeppenfeld '13, '14 (VBFNLO) (W $\left.{ }^{+} \mathrm{W}^{+}, ~ W Z, ~ Z Z\right) ~$ PS matching: Melia, Nason, Röntsch, Zanderighi '11 ($\mathrm{W}^{+} \mathrm{W}^{+}$)

- EW corrections for complete processes pp $\rightarrow 4 f+2 \mathrm{j}$
- NLO EW and QCD corrections for $\mathrm{W}^{ \pm} \mathrm{W}^{ \pm}$, WZ and ZZ final states Biedermann, Denner, Pellen '16; Denner, Dittmaier, Pellen, Schwan '19, Denner, Franken, Pellen, Schmidt '20
- full NLO corrections to $\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \quad$ Biedermann, Denner, Pellen '17
- NLO EW matched to EW PS and interfaced to QCD PS for $\mathrm{W}^{ \pm} \mathrm{W}^{ \pm}$ Chiesa, Denner, Lang, Pellen '19

Scale uncertainty reduced by factor 5:

$$
\sigma_{\mathrm{LO}}=1.6383(2)_{-9.44(2) \%}^{+11.66(2) \%} \mathrm{fb}, \quad \sigma_{\mathrm{NLO}}=1.3577(7)_{-2.7(1) \%}^{+1.2(1) \%} \mathrm{fb}
$$

results for separate orders:

order	$\mathcal{O}\left(\alpha^{6}\right)$	$\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{5}\right)$	$\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{4}\right)$	sum
$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$1.4178(2)$	$0.04815(2)$	$0.17229(5)$	$1.6383(2)$
$\delta \sigma_{\mathrm{LO}} / \sigma_{\mathrm{LO}}[\%]$	86.5	2.9	10.5	100

order	$\mathcal{O}\left(\alpha^{7}\right)$	$\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right)$	$\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{5}\right)$	$\mathcal{O}\left(\alpha_{\mathrm{s}}^{3} \alpha^{4}\right)$	sum
$\delta \sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$-0.2169(3)$	$-0.0568(5)$	$-0.00032(13)$	$-0.0063(4)$	$-0.2804(7)$
$\delta \sigma_{\mathrm{NLO}} / \sigma_{\mathrm{LO}}[\%]$	-13.2	-3.5	0.0	-0.4	-17.1

- LO EW contribution dominates for $\mathrm{W}^{+} \mathrm{W}^{+} \mathrm{jj}$
- LO interference small but non-negligible
- surprisingly large EW corrections at $\mathcal{O}\left(\alpha^{7}\right)$
- photon-induced contribution at NLO $+1.5 \%$ (LUXqed Manohar et al. '16, '17)

- EW contribution dominates everywhere
- $\mathcal{O}\left(\alpha^{7}\right)-40 \%$ at 800 GeV (Sudakov logarithms) dominant correction
- $\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right)-4 \%-0 \%$
- $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{5}\right), \mathcal{O}\left(\alpha_{\mathrm{s}}^{3} \alpha^{4}\right)$ between -2% and $+2 \%$ cancelling for large $p_{\mathrm{T} \mu^{+}}$
- photon-induced corrections increase to 4% at $p_{\mathrm{T} \mu^{+}}=800 \mathrm{GeV}$ (photon PDF grows with energy)
- corrections are large at high energies where new physics is expected to show up!
- To find signs of new physics, higher order calculations are important

$M_{\text {jj }}$ important to tag VBS signature $\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{j} \mathrm{j}$
- Large cross section also for high M_{jj}
- QCD-induced contrib. drops much faster
- $\mathcal{O}\left(\alpha^{7}\right)-6 \%--17 \%$
- $\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right)+5 \%--5 \%$
- $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{5}\right), \mathcal{O}\left(\alpha_{\mathrm{s}}^{3} \alpha^{4}\right)$ tiny
- photon-induced corrections decrease with M_{jj}

UNIVERSITÄT WÜRZBURG

Chiesa et al. ' 19

- Event generator based on Powheg and Recola for $\mathrm{pp} \rightarrow \mu^{ \pm} \nu_{\mu} \mathrm{e}^{ \pm} \nu_{\text {e jj }}$ and $\mathrm{pp} \rightarrow \mathrm{e}^{ \pm} \nu_{\mathrm{e}} \mathrm{e}^{ \pm} \nu_{\mathrm{e}}^{\mathrm{j} j}$ including EW corrections matched to QED parton shower and interfaced to QCD parton shower PS shifts events to smaller $p_{\mathrm{T}, \mathrm{j}_{1}}$, partially out of acceptance

Comparison of codes with VBS approximation (BONSAY, POwheg VBFNLO) and without VBS approximation (MoCANLO+RECOLA, MG5_AMC)
$\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{jj}$

differences up to 10% outside the QCD scale uncertainty band POWHEG, Bonsay: no s channel \Rightarrow reduction at small M_{jj} VBFNLO: no interference \Rightarrow enhancement at small M_{jj}

Ballestrero et al. '18 (VBSCAN)

Comparison of codes with VBS approximation (VBFNLO) and without VBS approximation (MoCANLO+RECOLA)
$\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{j} \mathrm{j}$

Ballestrero et al. '18 (VBSCAN)

- approximations worse at NLO than at LO: difference of up to 20% in fiducial region $M_{\mathrm{jj}}>500 \mathrm{GeV}, \Delta y_{\mathrm{jj}}>2.5$ (gluon bremsstrahlung fakes tagging jet in s channel)
- difference for fiducial cross section: ($M_{\mathrm{jj}}>500 \mathrm{GeV}, \Delta y_{\mathrm{jj}}>2.5$) $|t|+|u|$ approximation: $\sim-2 \% \quad|s|+|t|+|u|$ approximation: $\sim+1 \%$
- difference for inclusive cross section: ($M_{\mathrm{jj}}>200 \mathrm{GeV}, \Delta y_{\mathrm{jj}}>2$) $|t|+|u|$ approximation: $-6 \% \quad|s|+|t|+|u|$ approximation: $+2.6 \%$

Large universal NLO EW corrections to VBS processes

process	$\sigma_{\mathrm{LO}}^{\mathcal{O}\left(\alpha^{6}\right)}[\mathrm{fb}]$	$\sigma_{\text {NLO,EW }}^{\mathcal{O}\left(\alpha^{7}\right)}[\mathrm{fb}]$	$\delta_{\mathrm{EW}}[\%]$
Biedermann et al. '16 $\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e} \text { jj }}\left(\mathrm{W}^{+} \mathrm{W}^{+}\right)$	$1.5348(2)$	$1.2895(6)$	-16.0
Denner et al. '19 $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \nu_{\mathrm{e} . \mathrm{jj}}\left(\mathrm{ZW}^{+}\right)$ Denner et al. '20 $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{jj}(\mathrm{ZZ})$	$0.25511(1)$	$2.142(2)$	-16.0

largely independent of cuts \Rightarrow intrinsic feature of VBS processes
Relative NLO EW corrections in logarithmic approximation

process	$\delta_{\mathrm{EW}}[\%]$	$\delta_{\mathrm{EW}}^{\text {log, int }}[\%]$	$\delta_{\mathrm{EW}}^{\text {log,diff }}[\%]$	$\left\langle M_{4 \ell}\right\rangle[\mathrm{GeV}]$
$\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e} j \mathrm{jj}}$	-16.0	-16.1	-15.0	390
$\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \nu_{\mathrm{ejj}}$	-16.0	-17.5	-16.4	413
$\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{jj}$	-15.9	-15.8	-14.8	385

- Loose VBS cut: $M_{\mathrm{jj}}>100 \mathrm{GeV}$ based on 1708.02812 (CMS)
- s-channel NLO contribution involving tri-boson prod.

Less suppression at NLO owing to extra gluon jet

- 24% NLO QCD corrections to fiducial cross section
\Rightarrow include tri-boson contrib. for loose VBS cuts

Distribution in transverse momentum of the leading jet

- $\mathcal{O}\left(\alpha^{7}\right) \sim-30 \%$
at $p_{\mathrm{T}, \mathrm{j}_{1}}=800 \mathrm{GeV}$
(Sudakov logarithms) dominant correction
- $\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right) \lesssim 10 \%$ for $p_{\mathrm{T}, \mathrm{j}_{1}}>100 \mathrm{GeV}$ small QCD scale uncertainty owing to dynamical scale $\mu=\sqrt{p_{\mathrm{T}, \mathrm{j}_{1}} p_{\mathrm{T}, \mathrm{j}_{2}}}$
- large correction for small $p_{\mathrm{T}, \mathrm{j}_{1}}$ due to phase-space suppression at LO (all jets have small p_{T}) redistribution of events at NLO

Introduction and experimental motivation

VV production via vector boson scattering

- Important component of VV Vj production proceeding entirely via EW interactions at tree level
\checkmark self-interactions and interactions with H precisely predicted

Deviations from predictions signal new physics in EW sector

New probe of the SM in the EW sector given high Run II (and Run III) lumi

- Does VBS production occur with the rate predicted by the SM?

BSM H ${ }^{ \pm}$Production

- Do distributions show any signs of BSM physics?

Excellent experimental challenge - can we achieve precision?

- High multiplicity final state, complex and forwara objecis (jers)

Characteristics of VBS events

- Radiation of vector bosons, lack of color flow between jets
\Rightarrow Distinct kinematic signature for VVjj EW component

CMS Experiment at LHC, CERN
Data recorded: Wed Oct 12 18:07:34 2016 CDT Run/Event: 283043 / 94262902

Kenneth Long

- Forward and high momentum jets - Leptons central wrt jets
$\mathrm{m}_{\mu \mu}=90.4 \mathrm{GeV}$
$\mathrm{m}_{\mathrm{jj}}=876 \mathrm{GeV}$

Anatomy of a VBS measurement

- Select VV events with VBS-like jets
- Dominant experimental uncertainty: jet energy scale
- Estimate non-VV backgrounds - usually data driven

1. Measure $\mathrm{V} V \mathrm{jj}$ cross section (treat (a) + (b) as signal)

- Theoretical dependence minimal for cut-and-count analysis

2. Distinguish EW and QCD production mechanisms through kinematics
variables (e.g., of two highest p_{t} jets)

- Treat (a) as signal, (b) as background
- Modeling uncertainties important for MC-driven backgrounds
- Multi-variate - best sensitivity, less explicit theoretical assumptions

3. Look for new physics modifying VVV (VVVV) interaction

- Interpret in terms of generic (EFT) (c) or explicit models (d)

(a) $O\left(a^{4}\right)$

(b) $O\left(a_{s}^{2} a^{2}\right)$

(c)

(d)

Landscape of VBS measurements today

PRL 120, 081801 (18)

- EW obs (exp) 6.5 (4.4)
- Via it to $m_{j j}+C R$
\star PLB 809 (20) 135710
- EW obs > 5.0б
- via 2D fit to mjj/dEtajj
- unfolded xsecs
* PLB 812 (2020) 136018
- Polarisation search

* arXiv:2004.10612
- EW obs (exp) 5.5 (4.3)
- via fit to BDT+CR
*PLB 812 (2020) 135992
- EW obs (exp) 4.0 (3.5)
- Via fit to ME discriminant

Typically higher observed than expected significance (except z γ) for both experiments

Semi-leptonic decays

PRD 100, 032007 (2019)
EW obs (exp) 2.7 (2.5) via fit to $B D T s$ in $9 \mathrm{SR}+\mathrm{CR}$

Phys. Lett. B 798 (2019)134985 Only BSM search

- via 2D fit to mjj/njj +CRs
+ Via fit to BDT

PLB 793 (2019) 469

- EW obs (exp) 5.3 (3.2)
- fit to BDT+CRs
* PLB 809 (20) 135710
- EW obs (exp) 6.8 (5.3) Kenneth Long Results from ATLAS and CMS at $13 \mathrm{TeV}^{\left(36 \mathrm{fb}^{-1} \text { or } \star 140 \mathrm{fb}^{-1}\right) ~}$

PLB 803 (20) 135341

- EW obs (exp) 4.1 (4.1)
- Via fit to BDT [Z γ]

JHEP 2006 (20) 076

- EW 3.9 (5.2) [$\mathrm{Z} \gamma]$
- 2D fit to mjj/njj+CR
- combined w/ 8 TeV 4.7 (5.5)

PLB 811 (2020) 13598

- EW 4.9 (4.6) [W $\gamma]$
- combined w/ 8 TeV 5.3 (4.8) $z \gamma$: fully reconstructable
wr: highest VBS xsection

Fully leptonic VV analyses

(see backup for $W \gamma$ and $\Sigma \gamma$ results)

$\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \mathrm{j} j$ production

Vector-boson scattering

Other EW production
$\mu^{+} \mu^{+} j j$ Candidate Event
$m_{j j}=2800 \mathrm{GeV}$
$\left|\Delta y_{j i}\right|=6.3$

Run Number: 207490, Event Number: 33152138 Date: 2012-07-26 04:16:35 UTC

EWK same charge WW production

$\mathrm{W} \pm \mathrm{W} \pm \rightarrow \ell \nu \ell v$

Best EWK/QCD over background ratio!

- Main background WZ QCD mediated production:
- Normalization taken from data
- Shape taken from simulation
- Theory uncertainties applied (PDF, scale, shower)

Observation !!

Observed (expected with Sherpa) significance is 6.5σ (4.4б)
observation already with 2016 data

EWK WZjj production

$\mathrm{W} \pm \mathrm{Z} \rightarrow$ evel

Signal extraction strategy

Boosted Decision Treetrained on simulation events, to separate WZjj-EW from backgrounds

- 15 discriminant variables used

$$
\begin{aligned}
& m_{\mathrm{jj}}, \mathrm{~N}_{\mathrm{jets}}, \mathrm{p}_{\mathrm{T}^{\mathrm{j}} 1}, \mathrm{p}^{\mathrm{j}}{ }^{\mathrm{i} 2}, \eta^{\mathrm{j} 1}, \Delta \eta_{\mathrm{jj}}, \Delta \phi_{\mathrm{jj}} \\
& \mathrm{ly}_{1, \mathrm{w}}-\mathrm{yz}_{\mathrm{z}}, \mathrm{p}_{\mathrm{T}}^{\mathrm{w}}, \mathrm{p}_{\mathrm{T}}^{\mathrm{w}}, \mathrm{n}^{\mathrm{w}}, \mathrm{~m}_{\mathrm{T}} \mathrm{wz} \\
& \Delta \mathrm{R}(\mathrm{j} 1, \mathrm{Z}), \mathrm{R}_{\mathrm{p}}{ }^{\text {thard }}, ~ \zeta \text { lep }
\end{aligned}
$$

Electroweak $\mathrm{W} \pm \mathrm{W} \pm+\mathrm{WZ}$: combined approach

Simultaneous maximum likelihood fit with WZ and WW treated as signal

- For WZ, train BDT with 13 variables to distinguish EW from QCD - Jet, V (lepton, MET), jet+V kinematics
- ~20\% improvement wrt 2D $\eta_{\mathrm{ij}} / \mathrm{m}_{\mathrm{jj}}$ approach used for WW

Likelihood built from bins of WZ BDT in WZ SR, WW in 2D $\eta_{j j} / m_{j j}$ in WW SR, and m_{jj} in b-tagged non prompt, tVq , and ZZ cRs

- Signals + tZq ,ZZ with unconstrained normalisations

Electroweak $\mathrm{W} \pm \mathrm{W} \pm$ and WZ : results

Sensitivity to WW far exceeds 5 sigma
PLB 809 (2020) 135710
WZ significance obs. 6.8 (5.3 exp) s.d. Fiducial cross sections and unfolded distributions also reported

- Unfolding via maximum likelihood fit without regularisation
- WZ BDT replaced by mjj or observable
 EW WZ also higher
(as for ATLAS)
but precision
statistically limited

Process	$\sigma \mathcal{B}(\mathrm{fb})$	Theoretical prediction without NLO corrections (fb)	Theoretical prediction with NLO corrections (fb)
$\mathrm{EW} \mathrm{W}^{ \pm} \mathrm{W}^{ \pm}$	3.98 ± 0.45 0.37 (stat) ± 0.25 (syst) 4.42 ± 0.47	3.93 ± 0.57	3.31 ± 0.47
$\mathrm{EW}+\mathrm{QCD} \mathrm{W}$			
$\mathrm{E}^{ \pm} \mathrm{W}^{ \pm}$	0.39 (stat) ± 0.25 (syst) 1.81 ± 0.41	4.34 ± 0.69	3.72 ± 0.59
EW WZ	0.39 (stat) ± 0.14 (syst)	1.41 ± 0.21	1.24 ± 0.18
$\mathrm{EW}+\mathrm{QCD} \mathrm{WZ}$	4.97 ± 0.46	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	(stat) ± 0.23 (syst) 3.15 ± 0.49	3.12 ± 0.70	3.12 ± 0.70

Kenneth Long

Preliminaries

- All information about polarised cross-sections is within angular distributions of final-state particles.
- Extracting polarised observables simplifies interpretation and theoretical analysis.

Polarized observables

- are important probes of Standard Model gauge and Higgs sectors,
- may provide discrimination power between SM and beyond-SM physics.

Longitudinal polarisation mode of vector bosons is

- a consequence of the Electroweak Symmetry Breaking,
- very sensitive to deviations from SM: unitarity of cross sections with longitudinally polarised vector bosons realized in SM via cancellation of different contributions
\Rightarrow Extract experimental results for cross-sections with longitudinally polarised vector bosons.
- Massive vector bosons appear only as virtual particles \Rightarrow
- no unique definition of vector-boson polarisations
- diagrams without resonant vector bosons contribute to physical final state
- vector hosons are massive \Rightarrow definition of polarisation depends on frame and on mass
Different definitions of polarised cross sections in the literature:
- Definition via projections on LO decay-angle distributions Baglio, Le Duc '18, '19
- tailored to inclusive LO predictions
- assumes small non-resonant background
- only applicable for one polarised vector boson
- results depend on cuts, background and NLO corrections
- Definition based on on-shell production and decay with spin correlations Franzosi et al. [Madgraph] '19
- neglects non-resonant contributions
- only available for LO

Idea: use pole approximation to extract resonant contributions in gauge-invariant way Ballestrero, Maina, Pelliccioli '17, '19
Formulation developed by Denner, Pelliccioli '20 (see next slíde) gauge-invariant way Ballestrero, Maina, Pelliccioli '17, '19
Formulation developed by Denner, Pelliccioli '20

- Method is applicable to arbitrary processes and multiple resonances at LO, NLO and beyond.
- needs pole approximation (or double-pole approximation) for all NLO contributions including subtraction terms!
- results at NLO QCD exist for
- pp $\rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}}\left(\mathrm{W}^{+} \mathrm{W}^{-}\right.$production) Denner, Pelliccioli' 20 and
- pp $\rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \nu_{\mathrm{e}}$ (W^{+}Z production) Denner, Pelliccioli '20
- results at LO exist for VBS for ss-WW, WZ, ZZ, os-WW Ballestrero, Maina, Pelliccioli '17, '19, '20 [PHANTOM]
- generalisation in progress towards VBS at NLO QCD and NLO EW

Method allows to separate

- polarised cross sections in arbitrary frames
- interference contributions between polarisations
- irreducible background.

Natural choices of frame

* Díboson center-of-mass
* Laboratory
$\mathrm{pp} \rightarrow \mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{+} \mu^{-}$: Distributions in the positron rapidity in the fiducial region for polarisations defined in the CM (left) and in the LAB (right) frame.

Distributions for pol. cross sections defined in different frames differ considerably!

Electroweak $\mathrm{W} \pm \mathrm{W} \pm$: polarization study

- Longitudinal component of $\mathrm{W} \pm \mathrm{W} \pm$ is of large interest (coupling to H , regulating perturbative SM)
\Rightarrow Measurement of $\mathrm{EW} \mathrm{W}^{ \pm} \mathrm{W}^{ \pm}$at $\sim 10 \%$ precision allows first study
- LL component $\sim 10 \%$ of total
- Same selection and CRs (WZjj as background) as previous work
+ use BDT to separate $\mathrm{W} \pm \mathrm{W} \pm$ from all backgrounds (esp. nonprompt)
+ BDTs to distinguish polarised components

* Polarization compnnents are trame dependent

Electroweak $\mathrm{W} \pm \mathrm{W} \pm$: polarization results

- Size of data set is not sufficient to measure LL, LT, and TT all simultaneously
- Consider LL vs. XT and TT vs LX \Longrightarrow BDTs trained for each - Jet, lepton/MET kinematics, and jet+V kinematics
- Retrained for WW or parton-parton com frame

Results in WW com frame 95\% CL limits on LL ~2-3x SM
, LL 95\% CL limit: 1.17 (0.88) fb

- LX observed at 2.3 (3.1) s.d.

Process	$\sigma \mathcal{B}(\mathrm{fb})$	Theoretical prediction (fb)
$\mathrm{W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{ \pm}$	$0.32_{-0.40}^{+0.42}$	0.44 ± 0.05
$\mathrm{~W}_{\mathrm{X}}^{ \pm} \mathrm{W}_{\mathrm{T}}^{ \pm}$	$3.06_{-0.48}^{+0.51}$	3.13 ± 0.35
$\mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{X}}^{ \pm}$	$1.20_{-0.53}^{+0.56}$	1.63 ± 0.18
$\mathrm{~W}_{\mathrm{T}}^{ \pm} \mathrm{W}_{\mathrm{T}}^{ \pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21

Electroweak ZZ: strong at high lumi

Extremely clean four lepton signal $(\ell=e, \mu)$

- Very low nonprompt (fake) background
- Fully reconstructed final state
- Access to boson polarizations

But very low production cross section ZZ(4)) Selection

- 4 loose ID leptons, $\mathrm{p}_{\mathrm{T}}(\mu, \mathrm{e})>5,7 \mathrm{GeV}$
- $m_{j j}>100 \mathrm{GeV}(\mathrm{ptr}>30 \mathrm{GeV})$
- Expected S/B ~1/20

Estimating ZZjj QCD background is primary challenge

- Predominately qq and qg induced, but gg-induced component significant in most signal-like region
- Simulated with merged gg loop-induced +jets predictions with MG5_aMC

QCD production

VBS production

Electroweak ZZ results

- Low S/B, but discrimination possible
- Exploit matrix element discriminant (KD)
- Fit distribution in loose selection

Left: subset of distribution used in fit (right)

$$
\mu=\sigma_{\text {obs }} / \sigma_{\text {th. }}=1.22_{-0.40}^{+0.47}
$$

- Observed (expected) of 4.0б (3.5б)
+ Several fiducial cross sections of EW, EW+QCD production

MG5_aMC at LO POWHEG NLO

Kenneth Long

	Perturbative order	SM $\sigma(\mathrm{fb})$	Measured σ (fb)
		ZZjj inclusive	
EW	LO	0.275 ± 0.021	
	NLO QCD	0.278 ± 0.017	$0.33_{-0.10}^{+0.11}$ (stat) ${ }_{-0.03}^{+0.04}$ (syst)
EW+QCD	NLO EW	$0.242_{-0.013}^{+0.015}$	
		5.35 ± 0.51	$5.29_{-0.30}^{+0.31}$ (stat) ± 0.47 (syst)

EWK ZZjj production

ZZZjj analysis performed in two channels $\ell \ell \ell \ell j \mathrm{j}$ and $\ell \ell v v j \mathrm{j}$

- Interesting channel to probe neutral aQGCs
- Different background composition, data driven estimation for the main components
elvvjj signal region:
- WZ estimated in 3-lepton control region
- Non-resonant (ttbar and WW) estimated in e $\mu \nu \nu$ control region
l८८迆 signal region:
- QCD ZZjj control region with low $m_{j j}$ or $\Delta y(j)$ included in the fit

Di-jet invariant mass in the signal regions

EWK ZZjj results

- Extract inclusive cross-section EWK+QCD in the signal region

	Measured fiducial $\sigma[\mathrm{fb}]$	Predicted fiducial $\sigma[\mathrm{fb}]$
$\ell \ell \ell j j$	1.27 ± 0.12 (stat) ± 0.02 (theo) $\pm 0.07(\exp) \pm 0.01(\mathrm{bkg}) \pm 0.03$ (lumi)	1.14 ± 0.04 (stat) ± 0.20 (theo)
$\ell \ell \nu \nu j j$	1.22 ± 0.30 (stat) ± 0.04 (theo) $\pm 0.06(\exp) \pm 0.16$ (bkg) ± 0.03 (lumi)	1.07 ± 0.01 (stat) ± 0.12 (theo)

\square Then use Multivariate Discriminants (MD) to separate the EWK component. Three MD fitted together

Observation!!

	μ_{EW}		$\mu_{\mathrm{QCD}}^{\ell \ell \ell \ell j}$
Significance Obs. (Exp.)			
८थ८ौjj	1.5 ± 0.4	0.95 ± 0.22	$5.5(3.9) \sigma$
$\ell \ell \nu \nu j j$	0.7 ± 0.7	-	$1.2(1.8) \sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	$5.5(4.3) \sigma$

Fiducial cross-section in agreement with the SM

Experimentally

- Semileptonic final state offer more statistics
- much stronger QCD background
- hadronically decaying vector boson can be reconstructed using jet-substructure techniques $\Rightarrow 6.5 \%$ at $3 \mathrm{ab}^{-1}$ and 27 TeV Cavaliere et al. '18
- first results from ATLAS 1905.07714 (2σ significance) and CMS 1905.07445 theoretically
- Proliferation of partonic channels in full calculation 60 quark-induced partonic channels for $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{jj}$, +40 gluon-induced channels (+ b-induced channels) even more channels for semi-leptonic final states (4-quark final states)
- LO diagrams of orders $\mathcal{O}\left(g^{6}\right), \mathcal{O}\left(g^{4} g_{\mathrm{s}}^{2}\right),+\mathcal{O}\left(g^{2} g_{\mathrm{s}}^{4}\right)$ \Rightarrow need strategy to simplify calculation
- consider only contributions involving a virtual $V V^{\prime}$ pair in theoretical calculation to reduce number of contributions use double-pole approximation to calculate NLO corrections (gauge invariant, accuracy of DPA 1% for $\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e} \mathrm{j}}$) \Rightarrow calculation of NLO corrections should be feasible

Semi-leptonic VBS: experimental challenge

- High cross section \Longrightarrow sensitive to BSM

PLB 798 (2019)134985

- But very experimentally complex!
- Overwhelming backgrounds not just from VVjj, but also from $\mathrm{V}+$ jets and top production
- Focus on BSM, boosted Vqq events ("fat" V jets)
- Require high-pt lepton + MET or two leptons
- V+jets background estimation primary challenge
- Estimated from sideband region of fat jet mass (off mv)

Anomalous couplings: overview

- Studied using basis of Eboli, Gonzlez-Garcia, Mizukoshi [2]
- All parity and charge conserving operators with pure V,H couplings

$$
\mathcal{L}_{S M} \longrightarrow \mathcal{c}_{\text {eff }}=\mathcal{L}_{S M}+\sum_{n=1}^{\infty} \sum_{i} \frac{c_{i}^{(n)}}{\Lambda^{n}} \oint_{i}^{(n+4)}
$$

- Operators constructed from Higgs fields only, gauge field only, and Higgs and gauge fields

$$
\begin{array}{r}
\mathcal{L}_{S, 0}=\left[\left(D_{\mu} \Phi\right)^{\dagger} D_{\nu} \Phi\right] \times\left[\left(D^{\mu} \Phi\right)^{\dagger} D^{\nu} \Phi\right] \quad \mathcal{L}_{M, 0}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times\left[\left(D_{\beta} \Phi\right)^{\dagger} D^{\beta} \Phi\right] \\
\mathcal{L}_{T, 0}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\mu \nu}\right] \times \operatorname{Tr}\left[\hat{W}_{\alpha \beta} \hat{W}^{\alpha \beta}\right] \quad(\Phi \text { denotes H field) })
\end{array}
$$

All realized as excess at high mwz
Generalizes V,H interactions

- With some caveats...
- Assume dimension-6 operators (should dominate) are negligible
- Applicability of EFT assumes $\hat{s} \ll \Lambda$
- We are aware of recent studies of dimension-6 affects in VBS channels
- Expect to explore this at CMS in the future

Anomalous couplings: approach

- Exploit variables sensitive to modification from high-mass interaction

Limits on dim-8 EFT scalar/longitudinal parameters using Madgraph conventions

May 2020

Channel Limits $\quad \int$ Ldt \sqrt{s}

	\longrightarrow	ss WW	[-3.8e+01, 4.0e+01]	$19.4 \mathrm{fb}^{-1}$	8 TeV
$\mathrm{f}_{\mathrm{s}, 0} / \Lambda^{4}$					
	\mapsto	ss WW	$[-6.0 \mathrm{e}+00,6.4 \mathrm{e}+00]$	$137 \mathrm{fb}^{-1}$	13 TeV
	\mapsto	Wz	$[-5.8 \mathrm{e}+00,5.8 \mathrm{e}+00]$	$137 \mathrm{fb}^{-1}$	13 TeV
	H		[-2.7e $+00,2.7 \mathrm{e}+00]$	$35.9 \mathrm{fb}^{-1}$	13 TeV
		ss WW	$[-1.2 \mathrm{e}+02,1.2 \mathrm{e}+02]$	$19.4 \mathrm{fb}^{-1}$	8 TeV

$f_{\mathrm{S}, 1} / \Lambda^{4}$

ss WW
[-1.8e+01, 1.9e+01]
137 fb
13 TeV

Limits on dim-8 EFT mixed transverse and longitudinal parameters

using Madgraph conventions

Projections for HL-LHC

 Instantaneous luminosity: up to $\mathrm{L}=7.5 \times 10^{34} \mathrm{~Hz} / \mathrm{cm}^{2001}(\sim 3$ times RunII)
Integrated luminosity: up to $3000 \mathrm{fb}^{-1} \rightarrow$ Improved statistics Pile up: 140-200 per bunch crossing

The extended tracker should improve the lepton identification \rightarrow suppress contamination of ttbar,WZ, ZZ

Need upgrade to cope with hardest conditions.

Inner Tracker up to $|\eta|<4$

- Muon system coverage improved
- MTD timing layer
- High Granularity endcap
calorimeter
- DAQ and trigger systems (L1 and HLT - 7.5 kHz)

The highly granular

 calorimeter should significantly enhance the capability to observe this signal.Timing layer ($\mathbf{3 0} \mathbf{~ p s}$)
helps to suppress pile-up
$\sim 10 \mathrm{kHz}$ trigger bandwidth allows to keep object pT thresholds low

Uncertainties as Yellow Report 18:

- theoretical uncertainties $\rightarrow \mathbf{1} \mathbf{2}$
- experimental uncertainties $\boldsymbol{\rightarrow} \mathbf{1} / \sqrt{ } \mathbf{L}$ until the achievable accuracy with the
upgraded detector.

VBS scattering in HL LHC

```
VBS status @13 TeV RunII:
W \({ }^{ \pm} W^{ \pm} \mathrm{j}\) WZij CMS-SMP-19-012
ZZii CMS-SMP-20-001
Dominated by statistics
```

Increased c.m. energy
Extended tracker coverage

\qquad

More statistics \rightarrow better calibration

VBS projections HL-LHC:
$\mathrm{W}^{ \pm} \mathrm{W}^{ \pm} \mathrm{jj}$ CMS-PAS-FTR-18-005 WZj CMS-PAS-FTR-18-038 ZZij CMS-PAS-FTR-18-014

Dominated by systematics
Increased cross section $\sim 15-20 \%$

Better rejection of:

- pile up jets,
- additional leptons.

Reduction of experimental uncertainties.

- The more signal yield could allow:
- division in more categories \rightarrow enhance final sensitivity
\circ more raffinate Machine Learning techniques \rightarrow to disentangle from the intrinsic QCD background.
- Better detector performance could suppress reducible backgrounds e.g.:
- in W+W- (not observed yet) could help reducing the limiting top background.
- Helps further the study semi-leptonic final state, which guarantees an higher statistics than the leptonic ones.

HL-LHC projections

Polarization studies

\star Massive V bosons: 1 longitudinal (L) + 2 transverse (T) polarization mode.

* Longitudinal component: directly related to
- the Electroweak Spontaneous Symmetry Breaking
- and to Higgs boson \rightarrow cancellation of divergences @ high energy.

$$
<10 \% \text { of the }
$$ inclusive cross section

$\star \quad$ ZZ channel particularly suitable: complete reconstructions of the final state particle.

Polarization studies are and will remain challenging

More and more effort is invested to the field both from theoretical and experimental sides

Experimental summary

- Precision measurements are alternatives to direct searches for new physics phenomena, like heavy particles
- Vector boson scattering -- while a rare process -- is especially exciting as it is intimately related to EWSB: stringent probe of SM and probe of New Physics
- LHC collaborations analysed up to $140 \mathrm{fb}^{-1}$ data at 13 TeV , and expect a total of $300 \mathrm{fb}^{-1}$ in a few years and $3000 \mathrm{fb}^{-1}$ by the end of HL-LHC at 14 TeV
- These data so far show SM-like behavior with the currently statistics limited precision
- We expect to probe precisely the already observed processes (ss WW, WZ), reach observation level for ZZ, os WW, access new final states (like semi-leptonic decays)
- More and more stringent results on anomalous couplings, EFTs
- Understanding subtle differences needs more data, further improved techniques (machine learning!) and close collaboration between theory and experiment
- At HL-LHC even VBS studies will become systematics limited!
- First measurement of longitudinal polarisation performed and will help to understand the HL-LHC projections better
- Improve modelling with better calculations tuned from data
- Very active area with opportunities and challenges for both experimentalist and theorists

Status of NLO calculations for VBS

- NLO QCD corrections matched to PS available for all VBS processes NLO QCD corrections at level of few percent if $p_{\mathrm{T}, \mathrm{j}}$ or M_{jj} not small
- VBS approximation might not be sufficient at NLO Ballestrero et al. '18 NLO-QCD tri-boson contributions of $\mathcal{O}(20 \%)$ for loose VBS cuts
- electroweak corrections for VBS
- full NLO EW corrections known for

$$
\begin{array}{ll}
\mathrm{pp} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e} \mathrm{ej}}\left(\mathrm{~W}^{+} \mathrm{W}^{+}\right) & \text {Biedermann et al. '16, '17 } \\
\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \nu_{\mathrm{ejj}}(\mathrm{WZ}) & \text { Denner et al. '19 } \\
\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{jj}(\mathrm{ZZ}) & \text { Denner et al. '20 }
\end{array}
$$

- -16% EW corrections for fiducial cross section intrinsic feature of VBS, reproducible by simple approximations
- EW corrections in distributions even larger -40% for $p_{\mathrm{T}, \mathrm{j}_{1}}=800 \mathrm{GeV}$
- NLO EW corr. for $\mathrm{W}^{+} \mathrm{W}^{+}$scattering matched to QED PS Denner et al. '19
- full NLO corrections for $\mathrm{W}^{+} \mathrm{W}^{+}$scattering Denner et al. '17 only measurement of full process is well-defined!
Significant theoretical progress in VBS in recent years!

Expected progress in theoretical predictions to VBS

- NLO EW corrections for pp $\rightarrow \mu^{+} \nu_{\mu} \bar{\nu}_{\mathrm{e}} \mathrm{e}^{-} \mathrm{jj}\left(\mathrm{W}^{+} \mathrm{W}^{-}\right)$(in progress)
- predictions for VBS with semileptonic final states (needed)
- NLO corrections for polarised VBS within reach
- matching to EW parton showers (long term project)
- predictions for VBS within extended models feasible once LO and NLO matrix elements available
- predictions for VBS within SMEFT including (approximative) NLO corrections \Rightarrow need to extend/combine tools

Extra

Winter 2021 topical meeting on VBS: VBS at Snowmass

25-29 January 2021

Welcome	Pietro Govoni (3)
	14:00-14:15
Precise theoretical predictions for VBS	Ansgar Denner (c)
	14:15-14:45
ATLAS VBS Results	Joany Manjarres
	14:45-15:15
CMS VBS results	Kenneth Long (3)
	15:15-15:45
Break/discussion	
	15:45-16:15
Review of ATLAS projections on VBS	Kristin Lohwasser (1)3
	16:15-16:45
Review of CMS projections on VBS	Flavia Cetorelli es
	16:45-17:15
lessons learned from LHC data up to now, and outlook	Marc Riembau @
	14:00-14:30
HL-LHC performance CMS	Matteo Marchegiani (c)
	14:30-14:50
HL-LHC performance ATLAS	Karolos Potamianos ©
	14:50-15:10
MC challenges and implementation of EW shower in VINCIA	Rob Verheyen (s)
	15:10-15:40
Break/Discussion	
	15:40-16:00
New physics at LH-LHC with VBS signatures	Richard Ruiz ©
	16:00-16:30
Machine Learning for VBS	Thea Aarrestad ©
	16:30-17:00

The VBS viewpoint on the EFT landscape	Dr Raquel Gomez Ambrosio
	14:00-14:30
SM EFT effects in Vector-Boson Scattering at the LHC	Michal Szleper
	14:30-15:00
Detecting anomaly in vector boson scattering	Jinmian Liet al.
	15:00-15:30
Break/Discussion	
	15:30-16:00
An overview of future pp colliders	Patrizia Azzi
	16:00-16:30
axion-like particle searches with VBS	Jorge Fernandez De Troconiz
	16:30-17:00
electroweak pdfs	Keping Xie
	17:00-17:30
future muon colliders and BSM with VBS	Antonio Costantini
	14:00-14:30
future electron colliders and the VBS physics	Jürgen Reuter
	14:30-15:00
future muon colliders and EFT with VBS	Luca Mantani
	15:00-15:30
Break/Discussion	
	15:30-16:00

Double Higgs Boson Production from Resonances in Longitudinal VBS at a 100 TeV Collider Ashutosh Kotwal et al.

16:00-16:30
Fermion Loops in VBS

Idea: use pole approximation to extract resonant contributions in gauge-invariant way Ballestrero, Maina, Pelliccioli '17, '19
Formulation developed by Denner, Pelliccioli '20

- Not all diagrams involve required resonances resonant diagrams

> non-resonant diagrams

$$
\frac{R\left(k^{2}\right)}{k^{2}-M^{2}+\mathrm{i} M \Gamma}=
$$

$$
N\left(k^{2}\right)=
$$

- split full matrix element into resonant part and non-resonant part using pole expansion (gauge-invariant)

$$
\begin{aligned}
\mathcal{A} & =\frac{R\left(k^{2}\right)}{k^{2}-M^{2}+\mathrm{i} M \Gamma}+N\left(k^{2}\right) \\
& =\frac{R\left(M^{2}\right)}{k^{2}-M^{2}+\mathrm{i} M \Gamma}+\frac{R\left(k^{2}\right)-R\left(M^{2}\right)}{k^{2}-M^{2}}+N\left(k^{2}\right)=\mathcal{A}_{\text {res }}+\mathcal{A}_{\text {nonres }}
\end{aligned}
$$

- consider non-resonant part as irreducible background: no resonance

Separate polarisation modes of resonant amplitude split propagator numerator of resonant particle

$$
\begin{aligned}
\mathcal{A}_{\mathrm{res}} & =\mathcal{P}_{\mu} \frac{-g^{\mu \nu}}{k^{2}-M_{\mathrm{W}}^{2}+\mathrm{i} \Gamma_{\mathrm{W}} M_{\mathrm{W}}} \mathcal{D}_{\nu}=\mathcal{P}_{\mu} \frac{\sum_{\lambda} \varepsilon_{\lambda}^{\mu *}(k) \varepsilon_{\lambda}^{\nu}(k)}{k^{2}-M_{\mathrm{W}}^{2}+\mathrm{i} \Gamma_{\mathrm{W}} M_{\mathrm{W}}} \mathcal{D}_{\nu} \\
& =\sum_{\lambda=\mathrm{L}, \pm} \frac{\mathcal{M}_{\lambda}^{\text {prod }} \mathcal{M}_{\lambda}^{\mathrm{dec}}}{k^{2}-M_{\mathrm{W}}^{2}+\mathrm{i} \Gamma_{\mathrm{W}} M_{\mathrm{W}}}=: \sum_{\lambda=\mathrm{L}, \pm} \mathcal{A}_{\lambda}, \\
\left|\mathcal{A}_{\mathrm{res}}\right|^{2} & =\sum_{\lambda}\left|\mathcal{A}_{\lambda}\right|^{2}+\sum_{\lambda \neq \lambda^{\prime}} \mathcal{A}_{\lambda}^{*} \mathcal{A}_{\lambda^{\prime}}
\end{aligned}
$$

- incoherent sum $\sum_{\lambda}\left|\mathcal{A}_{\lambda}\right|^{2}:\left|\mathcal{A}_{\lambda}\right|^{2} \propto$ "polarised cross sections"
- interferences $\sum_{\lambda \neq \lambda^{\prime}} \mathcal{A}_{\lambda}^{*} \mathcal{A}_{\lambda^{\prime}}$
vanish for quantities fully inclusive in decay products but not in general
Polarisation vectors are defined in specific frames. Natural choices are the (di-boson-)centre-of-mass frame and the laboratory frame.

Electroweak $\mathrm{W} \pm \mathrm{W} \pm$: the golden channel

\star EW production dominant over QCD-induced

* Distinct same-sign (SS) lepton state

First studied at 8 TeV, observations with 2016 data
Moving from search to precise measurement with full Run II data and beyond

- Backgrounds

Non-prompt backgrounds \Longrightarrow data driven
Charge mis-ID

- Simulation
corrected with data
≥ 2 prompt SS leptons from MC
- WW QCD (small)
* WZ EW+QCD
- Correct using $3 l$ data

VBS production

QCD production

Electroweak WZ: massive charged probe

- Background estimation for $\mathrm{W} \pm \mathrm{W} \pm$ is a measurement
\Rightarrow Measure simultaneously
- Use huge data set to constrain other MC estimates (ZZ), (top)
- Sensitive to charged resonances or couplings (including Higgs-like)
- Less clean signature than $Z Z, W \pm W^{ \pm}$, but cross section accessible with large dataset

CrOSS SeCtion aCcessible with large datase		
Variable	$\mathrm{W}^{ \pm} \mathrm{W}^{ \pm}$	WZ
Leptons	2 leptons, $p_{\mathrm{T}}>25 / 20 \mathrm{GeV}$	3 leptons, $p_{\mathrm{T}}>25 / 10 / 20 \mathrm{GeV}$
$p_{\mathrm{T}}^{\mathrm{j}}$	$>50 \mathrm{GeV}$	$>50 \mathrm{GeV}$
$\left\|m_{\ell \ell}-m_{\mathrm{Z}}\right\|$	$>15 \mathrm{GeV}(\mathrm{ee})$	$<15 \mathrm{GeV}$
$m_{\ell \ell}$	$>20 \mathrm{GeV}$	-
$m_{\ell \ell \ell}$	-	$>100 \mathrm{GeV}$
$p_{\mathrm{T}}^{\text {miss }}$	$>30 \mathrm{GeV}$	$>30 \mathrm{GeV}$
b quark veto	Required	Required
$\max \left(z_{\ell}^{*}\right)$	<0.75	<1.0
m_{jj}	$>500 \mathrm{GeV}$	$>500 \mathrm{GeV}$
$\left\|\Delta \eta_{\mathrm{ij}}\right\|$	>2.5	>2.5

Kenneth Long
QCD production VBS production

EWK Z $\mathrm{Y}_{\mathrm{j} j}$ production

Electroweak $Z \gamma+2 j$ production not yet observed.

- Strong evidence reported by both ATLAS and CMS with 13 TeV data
- Latest ATLAS result using 2015+2016 data (36fb-1)
- Interesting channel to probe neutral aQGCs (larger cross section than ZZ), sensitive to WWZY vertex
- Analysis selection:
- Uses an mll+mlly cut to reduce FSR contributions
- Veto b-jets
- $\quad \Delta \eta_{\mathrm{j} j}>1$, centrality $\left(Z_{\gamma}\right)<5$ and $m_{\mathrm{j} j}>150 \mathrm{GeV} \rightarrow$ Looser than the usual VBS selections used
- Simulation

	Process	Generator
Zr EWK	MG5_NLO+PY8 accuracy	
LO		
Z_{r} QCD	Sherpa 2.2.2	NLO (0-1j), LO (3j)
Z+jets	Sherpa 2.2.2	NLO (0-2j), LO (3-4j)

Background estimation

Phys. Lett. B 803 (2020) 135341

- QCD Zү+2j
- Normalization estimated from data (pre-correction 0.91), and then fitted in the signal region
- Data

Total uncertainty Z γ EW $\mathrm{Z} \gamma$ QCD
Z+jets
$\mathrm{tt} \gamma$
Other Backgrounds

■ Z+jet: DD estimate of shape and normalization

- 2D sideband method (photon ID, isolation), in region close to SR except: jet pT 30 GeV , mjj<150 GeV
- Extrapolation to SR using ratio $\mathrm{Z}+\mathrm{jet} / \mathrm{ZY}$
- ttbar Y :
- Pre-correction factor from data: 1.41 + fit in a CR
- Dedicated CR (b-CR): >=1 b-jet -> ~70\% purity, 25\% Zy QCD.
- Smaller backgrounds: WZ, Wt
- From MC (less than 0.5% in SR)

$\mathbf{Z}_{\gamma \mathrm{jj}}$ results

- EWK ZYjj signal extraction:
- Fitted BDT distribution trained to separate EW signal from background (13 variables)
- Simultaneous fit of signal region and b-CR

Evidence !!

4.1 σ expected and observed significance

- Measured cross sections:

$\sigma_{Z \gamma j j-\mathrm{EW}}^{\mathrm{fid}}$	=	7.8 ± 1.5 (stat.) ± 1.0 (syst.) ${ }_{-0.8}^{+1.0}$ (mod.) fb
$\sigma_{Z \gamma j j-\mathrm{EW}}^{\text {fid., MADGRH }}$	=	7.75 ± 0.03 (stat.) ± 0.20 (PDF $\left.+\alpha_{\mathrm{S}}\right) \pm 0.40$ (scale) fb
$\sigma_{Z \gamma j j-\mathrm{EW}}^{\text {fid., Sherpa }}$	=	8.94 ± 0.08 (stat.) ± 0.20 ($\left.\mathrm{PDF}+\alpha_{\mathrm{S}}\right) \pm 0.50$ (scale) fb

Variable used in the BDT

$m_{j j}$
$\Delta \eta_{j j}$
$\zeta(\ell \ell \gamma)$
$m_{\ell \ell \gamma}$
$p_{T}^{\ell \ell \gamma}$
$m_{\ell \ell}$
$p_{T}^{\ell \ell}$
$p_{T}^{\text {lead lep }}$
$p_{T}^{\text {lead jet }}$
$\eta^{\text {lead jet }}$
$m i n \Delta R(\gamma, j)$
$\Delta \phi(\ell \ell \gamma, j j)$
$\Delta R(\ell \ell \gamma, j j)$

- Combined EW+QCD Zүjj cross-section also measured: same method and phase spaces, except for CRs which are excluded

$\sigma_{Z \gamma j j}^{\text {fid. }}$	$=$	71 ± 2 (stat.) $)_{-7}^{+9}$ (syst.) ${ }_{-17}^{+21}$ (mod.) fb
$\sigma_{Z \gamma j j}^{\text {fid., MADGRAPH+SHERPA }}$	$=$	88.4 ± 2.4 (stat.) ± 2.3 (PDF $\left.+\alpha_{\mathrm{S}}\right)_{-19.1}^{+29.4}$ (scale) fb.

In agreement with the expectation. Large uncertainties from theory modeling!

Z_{γ} : neutral interactions + photons

Probe neutral quartic couplings

- Clean signal from leptonic Z decay
- Fully reconstructed final state
- Neutral probe with higher cross section than ZZ

$$
\begin{aligned}
& \text { Common selection } \quad p_{\mathrm{T}}^{\ell 1, \ell 2}>25 \mathrm{GeV},\left|\eta^{\ell 1, \ell 2}\right|<2.5 \text { for electron channel } \\
& p_{\mathrm{T}}^{\ell 1, \ell 2}>20 \mathrm{GeV},\left|\eta^{\ell 1, \ell 2}\right|<2.4 \text { for muon channel } \\
& p_{\mathrm{T}}^{\gamma}>20 \mathrm{GeV},\left|\eta^{\gamma}\right|<1.444 \text { or } 1.566<\left|\eta^{\gamma}\right|<2.500 \\
& p_{\mathrm{T}}^{\mathrm{j} 1, \mathrm{j}^{2}}>30 \mathrm{GeV},\left|\eta^{\mathrm{j}, \mathrm{j}, 2}\right|<4.7 \\
& 70<m_{\ell \ell}<110 \mathrm{GeV}, m_{\mathrm{Z} \mathrm{\gamma}}>100 \mathrm{GeV} \\
& \Delta R_{\mathrm{ij}}, \Delta R_{\mathrm{j} \gamma}, \Delta R_{\mathrm{j} \ell}>0.5, \Delta R_{\ell \gamma}>0.7 \\
& \text { Control region } \\
& \text { EW signal region } \\
& 150<m_{\mathrm{jj}}<400 \mathrm{GeV} \text {, } \\
& \text { Common selection } \\
& m_{\mathrm{jj}}>500 \mathrm{GeV}, \Delta \eta_{\mathrm{jj}}>2.5 \text {, } \\
& \eta^{*}<2.4, \Delta \phi_{\mathrm{Z} \gamma, \mathrm{j}}>1.9 \text {, } \\
& \text { Common selection }
\end{aligned}
$$

Backgrounds with nonprompt photons and leptons estimated with data-driven approach

- Other background from MC
- Control region to validate and constrain QCD Z_{γ}

$$
\eta^{*}=\left|\eta_{\mathrm{Z}_{\gamma}}-\left(\eta_{\mathrm{j} 1}+\eta_{\mathrm{j} 2}\right) / 2\right|
$$

Electroweak Z : CMS results

Fit to 2D distribution of m_{jj} and $\Delta \mathrm{n}_{\mathrm{ij}}$

- EW cross section obtained from best-fit signal strength
- Include yield in 100 < mjj < 400 GeV CR (constrain QCD VVij)
- Separate bins per photon barrel/endcap and lepton flavour

$$
\mu_{\mathrm{EW}}=\sigma_{\mathrm{obs}} / \sigma_{\mathrm{th} .}=0.65 \pm 0.24 \quad \sigma_{\mathrm{th} .} \text {. from MG_aMC LO }
$$

Observed (expected) significance 3.9б (5.2б)
$\Rightarrow 4.7$ (5.5) combined with 8 TeV assuming $\mu_{\mathrm{EW}}=\mu_{\mathrm{Ew}, \mathrm{SM}}=1$

Also perform fit with EW and QCD signal

$$
\sigma_{\text {fid }}=14.3 \pm 1.1 \text { (stat) } \pm 2.7 \text { (syst) fb }
$$

Agrees with MG5_aMC prediction, $\sigma_{\mathrm{LO}}=15.7 \pm 1.7 \mathrm{fb}$

W γ : charged interactions + photons

- Challenging experimental state

VBS production

Electroweak W_{γ} : results

- Very similar approach to Gamma analysis
- EW, EW+QCD via fit to 2D distribution of $m_{j j}$ and $\Delta \eta_{\mathrm{ij}}$
- Control region of $\mathrm{m}_{\mathrm{j} j}$ 200-400 to constrain QCD norm.

$$
\mu=\sigma_{\text {obs }} / \sigma_{\text {th } .}=1.20_{-0.24}^{+0.26}
$$

$\sigma_{\text {th. }}$ from MG_aMC LO
Observed (expected) significance 4.9б (4.6б)
$\Rightarrow 5.3$ (4.8) combined with 8 TeV assuming $\mu_{\mathrm{EW}}=\mu_{\mathrm{EW}, \mathrm{SM}}=1$

Also perform fit with EW and QCD signal

$$
\sigma_{\text {fid }}=108 \pm 5 \text { (stat) } \pm 15 \text { (syst) fb }
$$

Agrees with MG5_aMC prediction @LO

$$
\mu=\sigma_{\text {obs }} / \sigma_{\mathrm{th} .}=1.21_{-0.16}^{+0.17}
$$

VBS and VBF: measurable, but not measurable

- Protons in LHC serve as source of vector boson beams
- Not possible to separate VBS (or VBF) in a gauge invariant way \rightarrow Measure EWK V(V)jj production
Vector Boson Scattering/Fusion Vector Boson bremsstrahlung

Measure EWK V(V) jj production

- Usually QCD mediated production of $\mathrm{V}(\mathrm{V}) \mathrm{jj}$ at the LHC has larger cross sections than the EWK production \rightarrow crucial for a precise measurement to understand and reduce the QCD background!

Published measurements

What has been done so far, and what will be covered in this talk ?

Standard Model Production Cross Section Measurements

Published measurements

What has been done so far, and what will be covered in this talk ?

	Channel		Energy (Luminosity)	Observed (Expected) σ	Covered in this talk!
VBF	$W^{ \pm} \mathrm{jj}$	$\text { Eur. Phys. J. C } 77$ (2017) 474	7, $8 \mathrm{TeV}\left(5,20 \mathrm{fb}^{-1}\right)$	$>5 \sigma$	
	Z jj	2006.15458	$13 \mathrm{TeV}\left(139 \mathrm{fb}{ }^{-1}\right)$	$>5 \sigma$	
VBS	$\mathrm{W} \pm \mathrm{W} \pm \mathrm{jj}$	Phys. Rev. Lett. 123 (2019) 161801	$13 \mathrm{TeV}(36 \mathrm{fb}-1)$	6.5σ (4.4)	Covered in this talk!
	$\mathrm{W} \pm \mathrm{Z} \mathrm{jj}$	$\begin{aligned} & \frac{\text { Phys. Lett. B } 793}{(2019) 469} \end{aligned}$	$13 \mathrm{TeV}\left(36 \mathrm{fb}{ }^{-1}\right)$	5.3σ (3.2)	
	W $\pm \gamma \mathrm{jj}$	-	-	-	
	$\mathrm{Z}_{\gamma} \mathrm{jj}$	$\frac{\text { Phys. Lett. B } 803}{(2020) 135341}$	$13 \mathrm{TeV}(36 \mathrm{fb}-1)$	4.1σ (4.1)	
	ZZ jj	$\underline{2004.10612}$	$13 \mathrm{TeV}\left(139 \mathrm{fb}^{-1}\right)$	5.5σ (4.3)	
	$\mathrm{W} \pm \mathrm{V}$ semi-lept jj	Phys. Rev. D 100 (2019) 032007	$13 \mathrm{TeV}\left(36 \mathrm{fb}{ }^{-1}\right)$	$<3 \sigma$	

EWK Zjj differential cross sections

- Signal region built requiring high di-jet invariant mass, no hadronic activity in between the tagging jets and Z boson centrality
- QCD background (strong) has the largest contribution over the spectra
- Large QCD background miss-modeling, huge efforts to extract it in a

Signal extraction steps

Binned maximum likelihood fit performed to reduce dependence on MC mis-modeling. In the fit:

1. QCD background is estimated $\rightarrow 4$ different regions using two uncorrelated variables:

- Bin-by-bin weights for strong Zjj, separate for low and high centrality and linked within the gap jets bins
- Linear correction applied to strong Zjj to correct for residual dependence on the N gap jets

2. Bin-by-bin electroweak Zj j signal strengths (same in all regions)
3. Procedure repeated for different MC generators
4. The final EWK signal is taken to be the midpoint of the envelope of yields
 obtained using the three different QCD Zij event generators

Zjj differential cross sections results

- Differential cross sections extracted for EWK only and EWK+QCD production as a function of four observables: $\mathrm{m}_{\mathrm{jj}},\left|\Delta \mathrm{y}_{\mathrm{jj}}\right|, \mathrm{p}_{\mathrm{T}, \mathrm{I}}$ and $\Delta \varphi_{\mathrm{ij}}$

EWK+QCD Zjj production

Effective Field Theory interpretation

- To capture the EFT effects cross sections can be written as :
- Expectation: EFT-SM interference (linear) leading contribution
- Different distributions show different sensitivities to the linear and quadratic terms (Madgraph SMEFT at LO)
- Limits extracted using the measured EW Zjj differential cross-section as a function of the parity-odd $\Delta \phi_{\mathrm{jj}}$

Wilson coefficient	Includes $\left\|\mathcal{M}_{\mathrm{d} 6}\right\|^{2}$	95% confidence interval $\left[\mathrm{TeV}^{-2}\right]$		p-value (SM)
c_{W} / Λ^{2}	Expected	$[-0.30,0.30]$	$[-0.19,0.41]$	45.9%
	Observed	$[-0.31,0.29]$	$[-0.19,0.41]$	43.2%
$\tilde{c}_{W} / \Lambda^{2}$	no	$[-0.12,0.12]$	$[-0.11,0.14]$	82.0%
	yes	$[-0.12,0.12]$	$[-0.11,0.14]$	81.8%
$c_{H W B} / \Lambda^{2}$	no	$[-2.45,2.45]$	$[-3.78,1.13]$	29.0%
	yes	$[-3.11,2.10]$	$[-6.31,1.01]$	25.0%
$\tilde{c}_{H W B} / \Lambda^{2}$	no	$[-1.06,1.06]$	$[0.23,2.34]$	1.7%
	yes	$[-1.06,1.06]$	$[0.23,2.35]$	1.6%

- Strongest limits when pure dim-6 are excluded from the theoretical prediction!

$$
\begin{aligned}
\text { Quadratic: } & \cdots \cdots \cdot\left|\mathcal{M}_{\mathrm{d}}\right|^{2} \\
\text { EFT-SM linear: } & --2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{d} 6}\right) \\
\text { full EFT: } & -\left|\mathcal{M}_{\mathrm{d} \sigma}\right|^{2}+2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{d} \sigma}\right)
\end{aligned}
$$

$$
m_{\mathrm{jj}}[\mathrm{TeV}] \quad\left|\Delta y_{\mathrm{ij}}\right| \quad p_{\mathrm{T}, \| l}[\mathrm{GeV}]
$$

Charged $W W \gamma$ and $W W Z$ aTGC results

LEP parametrization: arXiv:hep-ph/9601233
respects $\mathrm{SU}(2) \times U(1)$ gauge invariance
conserves charge conjugation (C) and parity (P) symmetries
5 parameters each defined to be zero in SM

$$
\Delta g_{1}^{Z}=g_{1}^{Z}-1 \quad \Delta \kappa_{\gamma}=\kappa_{\gamma}-1 \quad \Delta \kappa_{Z}=\kappa_{Z}-1 \quad \lambda_{\gamma} \quad \lambda_{Z}
$$

only 3 parameters independent (gauge invariance)

$$
\Delta \kappa_{Z}=\Delta g_{1}^{Z}-\Delta \kappa_{\gamma} \tan ^{2} \theta_{W} \quad \lambda_{\gamma}=\lambda_{Z}
$$

Typically no form-factors (FF) or $\mathrm{FF}=\infty$
When FF used cut-off energy of same order as kinematic limit of collision energy (results without FF weaker)
EFT to LEP parameterization conversions using $\alpha\left(M_{\mathrm{z}}\right)$ and $\sin ^{2} \theta_{\mathrm{w}}\left(M_{\mathrm{z}}\right)$

More details at
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Effective field theory interpretation

Neutral ZZv and ZZZ aTGC results

Vector-boson scattering as probe of EWSB and new physics

Exclusive $\gamma \gamma \rightarrow$ WW production candidate

Anomalous couplings: illustrative results

Search for heavy bosons in VV final states

gATLAS LIEXPERIMENT

Run Number: 207749, Event Number: 36414089
Date: 2012-07-31 01:30:57 CEST

Photon pdf

- http://luxqed.web.cern.ch/luxqed/
percentage of proton's momentum carried by photon

