Search for SUSY at the LHC

Dezső Horváth

horvath.dezso@wigner.mta.hu

Wigner RCP, Budapest and Atomki, Debrecen

ELFT Winter School: Physics beyond the Standard Model: Modern Approaches, Budapest, 2021.02.01-04.

Supported by half the world (including Hungarian NKFIH Grants)

Dezső Horváth: Search for SUSY at the LHC

Outline

- Problems of the Standard Model
- Supersymmetry (SUSY): a solution for all?
- Searching for SUSY phenomena
- Natural SUSY: finished?
- Status and prospects

Best introduction to SUSY:

A Supersymmetry Primer by Stephen P. Martin https://arxiv.org/abs/hep-ph/9709356v7 (last revised in 2016)

Dezső Horváth: Search for SUSY at the LHC

Dezső Horváth: Search for SUSY at the LHC

Dezső Horváth: Search for SUSY at the LHC

SM: parameter fitting, 2018

Dezső Horváth: Search for SUSY at the LHC

wigner

alomk

BSM School, ELTE, Budapest, 2021.02.02.

3

SM at CERN's souvenir shop

John Ellis, the creator h.c. = Herm. conj. or hot coffee?

wiener

atomk

CMS: 78 p-p collisions in one event!

An event (i.e. bunch crossing) can have many p-p collisions. This increases the statistics and complicates the analysis.

Dezső Horváth: Search for SUSY at the LHC

wigner

ATLAS vs. CMS

Both optimized to detect (and study!) the production and decay of Higgs-bosons. Very different detectors giving very similar results.

	ATLAS	CMS	
Magnet	toroid + <i>small(?)</i> 2 T solenoid	large 3.8 T solenoid	
Tracker	semiconductor + TRD	semiconductor	
E-m calorimeter	LAr with steel and Pb	PbWO ₄ scint.	
Hadron calm.	steel + scint. tiles brass + scint. tiles		
Far forward h-cal	LAr with Cu and W	steel with quartz Cher.	
Muon detector	chambers (4 types)	chambers (3 types)	
Size	$\oslash 25\mathrm{m} imes46\mathrm{m}$ (23000 m 3)	$\oslash 15\text{m} imes 21.6\text{m}$ (3800 m ³)	
Trigger	3-level	2-level	
Weight	7000 t	14000 t	
Participants (sci)	3000	2300	

wigner

atemk

CMS & ATLAS, signal strengths

So how Higgs study can help to find new physics? Compare precise measurements with SM predictions

Production rate (cross section) ratios: $\mu_i = \sigma_i/(\sigma_i)_{
m SM}$ (*i* = ggF, VBF, WH, ZH, ttH)

Relative decay rates (ratios of branching fractions): $\mu^f = B^f/(B^f)_{\rm SM}$ (f = ZZ, WW, $\gamma\gamma$, $\tau\tau$, bb, $\mu\mu$)

Production and decay cannot be separated, what is really measured:

$$\mu_i^f = rac{\sigma_i B^f}{(\sigma_i)_{
m SM} (B^f)_{
m SM}} = \mu_i \mu^f$$

Allowing for BSM interpretation: $\sigma_i B^f = \sigma_i(\underline{\kappa}) \cdot \Gamma^f(\underline{\kappa}) / \Gamma_H$ Γ_H, Γ^f : total and frac. decay widths, Coupling modifiers: $\kappa_j^2 = \sigma_j / \sigma_j^{SM}$ (prod.); $\kappa_j^2 = \Gamma^j / \Gamma_{SM}^j$ (decay)

[ATLAS and CMS Collaborations], JHEP 1608 (2016) 045.

CMS & ATLAS, signal strengths, Run 1

-p.10/38

Production channels: CMS, $H \rightarrow \gamma \gamma$

ATLAS & CMS: coupling mod's, Run 1

Coupling to fermions & bosons: per expt. and average per decay mode

[ATLAS and CMS Collaborations], JHEP 1608 (2016) 045.

Dezső Horváth: Search for SUSY at the LHC

wigner

Problems of the Standard Model – 1

- Gravity? S = 2 graviton?
- Asymmetries: right ⇔ left World ⇔ Antiworld
- Artificial mass creation: Higgs-field ad hoc
- Charge quantization: $Q_{\mathrm{e}} = Q_{\mathrm{p}}, \; Q_{\mathrm{d}} = Q_{\mathrm{e}}/3$
- Why the 3 fermion families?
- Nucleon spin: how 1/2 produced?
- 19 free parameters (too many ??):
 - 3 couplings: α , Θ_W , $\Lambda_{\rm QCD}$; 2 Higgs: M_H , λ
 - 9 fermion masses: $3 \times M_{\ell}, \ 6 \times M_q$
 - 4 parameters of the CKM matrix: Θ_1 , Θ_2 , Θ_3 , δ
 - QCD-vacuum:

Dezső Horváth: Search for SUSY at the LHC

Problems of the Standard Model – 2

Neutrino mysteries

- $M_{\nu} > 0 \Rightarrow +3$ masses, +4 mixing matrix The SM does not like them...
- Are $\nu_{\rm R}$, $\overline{\nu}_{\rm L}$ sterile with no interaction?
- What makes them oscillate (extra interaction)?
- Are they Majorana particles $\overline{\nu} \equiv \nu$?
- Gravitational mass of the Universe:
 - 4% ordinary matter (H, He, stars, gas, dust, ν)
 - 23% invisible dark matter (out of SM!)
 - 73% mysterious dark energy
- Naturalness (hierarchy):

The mass of the Higgs boson quadratically diverges due to radiative corrections. Cancelled if fermions and bosons exist in pairs!

Hierarchy problem

BEH potential: $V = -m_H^2 \Phi^2 + \lambda \Phi^4$ $m_H = 125 \text{GeV}$ Corrections to the mass of the Higgs boson: Fermion loop: f $\Delta m_H^2 = rac{|\lambda_f|^2}{8\pi^2} [-\Lambda_{
m UV}^2 + 6m_f^2 \ln rac{\Lambda_{
m UV}}{m_f} + \ldots]$ Η Η For the top quark $\lambda_t pprox 1$ UV cutoff: $\Lambda_{\rm UV} > 10^{14} {
m GeV!}$ Tuning of the BEH parameters with the precision of 10^{-12} !

If there were two heavy scalar particles:

$$\mathrm{f} \leftrightarrow \mathrm{S}_1, \mathrm{S}_2$$
: $\lambda_S = \lambda_f^2; \;\; m_S = m_f$

 $\Delta m_{H}^{2} = rac{\lambda_{S}}{16\pi^{2}} [+\Lambda_{\mathrm{UV}}^{2} - 2m_{S}^{2} \ln rac{\Lambda_{\mathrm{UV}}}{m_{S}} + \ldots]$ Λ^{2} corrections would cancel out

Question: Why do we need two scalars for one fermion?

Dezső Horváth: Search for SUSY at the LHC

Many-many different models

Beyond the Standard Model

Y. Gershtein et al., "Working Group Report: New Particles, Forces, and Dimensions,"

arXiv:1311.0299.

Dezső Horváth: Search for SUSY at the LHC

(wigner)

alomki

Supersymmetry (SUSY)

Hypothesis: Fermions and bosons exist in pairs: $Q|F>=|B>; Q|B>=|F> m_B = m_F$ Identical particles, just spins different

Broken at low energy, partners: much larger mass?

SUSY should solve many problems

Dezső Horváth: Search for SUSY at the LHC

wiener

alomk

SUSY: Higgs sector

2 Higgs doublets \Rightarrow masses to upper and lower fermions

Extended left-right asymmetry:

 $m_L=m_R$, but $ilde{m}_L
eq ilde{m}_R$

Question: Why should the scalar SUSY partners of the left- and right-polarized SM fermions be distinctly different particles with different masses?

8 Higgs fields \Rightarrow 5 Higgs bosons: h^0, H^0, A^0, H^{\pm}

Higgs parameters: $tan\beta = v_1/v_2$, masses

Question: How can the two Higgs (BEH) doublet fields result in five Higgs-bosons? Why do the 5 Higgs bosons have four higgsino partners (and not five) in the SUSY space?

LSP = dark matter?

SUSY's quantum number: R parity $R = (-1)^{3B-L+2S}$ (B: baryon charge, L: lepton charge, S: spin)

> R = +1 particle, R = -1 SUSY partner Parity-like: $R^2 = +1$

If *R* conserved, lightest SUSY particle (LSP) is stable

R parity may not be much violated: we would detect LSP decays

Neutral LSP: excellent dark matter candidate

Dezső Horváth: Search for SUSY at the LHC

Minimal Supersymmetric SM

Electroweak symmetry breaking \Rightarrow MSSM-fermions mix into mass eigenstates {Electroweak gauginos + higgsinos} \Rightarrow {charginos and neutralinos } $\left\{\tilde{B}(=\tilde{\gamma}), \tilde{W}^{\pm}, \tilde{W}^{0}(=\tilde{Z}); \tilde{h}^{0}, \tilde{H}^{0}, \tilde{H}^{\pm}\}\right\} \Rightarrow \left\{\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{\pm}; \tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}, \tilde{\chi}_{4}^{0}\right\}$

(mass grows with index) Question: gluinos do not mix?

Lightest SUSY particle (LSP) depends on model, e.g. $\tilde{\chi}_1^0$

SUSY breaking (how?) \Rightarrow many (> 100) new parameters masses, couplings, mixing angles Lots of model variants, huge parameter space, different constraints. hMSSM: m(h) = 125 GeV (with corrections!)

Questions: Why should neutralinos be Majorana particles (their own antiparticles)? What should prevent the LSP as dark matter to make dark galaxies and black holes?

(wigner

atom

The missing MSSM menagerie

Kind	spin	R parity	gauge eigenstate	mass eigenstate
Higgs bosons	0	+1	${ m H}^0_1, { m H}^0_2, { m H}^+_1, { m H}^2$	$\mathrm{h^0, H^0, A^0, H^\pm}$
			$ ilde{\mathrm{u}}_L, ilde{\mathrm{u}}_R, ilde{\mathrm{d}}_L, ilde{\mathrm{d}}_R$	same
squark	0	-1	$ ilde{ extsf{s}}_L, ilde{ extsf{s}}_R, ilde{ extsf{c}}_L, ilde{ extsf{c}}_R$	same
			$ ilde{\mathrm{t}}_L, ilde{\mathrm{t}}_R, ilde{\mathrm{b}}_L, ilde{\mathrm{b}}_R$	$ ilde{ extbf{t}}_1, ilde{ extbf{t}}_2, ilde{ extbf{b}}_1, ilde{ extbf{b}}_2$
			$ ilde{\mathrm{e}}_L, ilde{\mathrm{e}}_R, ilde{ u}_\mathrm{e}$	same
slepton	0	-1	$ ilde{\mu}_L, ilde{\mu}_R, ilde{ u}_\mu$	same
			$ ilde{ au}_L, ilde{ au}_R, ilde{ u}_{ au}$	$ ilde{ au}_1, ilde{ au}_2, ilde{ u}_{ au}$
neutralino	1/2	-1	$ ilde{\mathrm{B}^0}, ilde{\mathrm{W}^0}, ilde{\mathrm{H}}^0_1, ilde{\mathrm{H}}^0_2$	$ ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$
chargino	1/2	-1	$ ilde{\mathrm{W}}^{\pm}, ilde{\mathrm{H}}_1^+, ilde{\mathrm{H}}_2^-$	$ ilde{\chi}_1^\pm, ilde{\chi}_2^\pm$
gluino	1/2	-1	ĝ	same
goldstino	1/2	-1	Ĝ	same
gravitino	3/2			

Dezső Horváth: Search for SUSY at the LHC

atomki

(wigner

SUSY: coupling constants

Minimal Supersymmetric Standard Model: Unification! Bend at low energies: SUSY enters with many new particles \Rightarrow more loop corrections

wiener

alomk

MSSM mass spectrum: preconceptions

Even if we remain sceptic it is worthwhile to know what do most of the model constructors think (after S.P. Martin)

- R parity is barely violated
- LSP: $ilde{\chi}_1^0$ or gravitino
- ${}$ Gluino mass $M_3\equiv m(ilde g)\gg m(ilde\chi_1^0),m(ilde\chi_2^0),m(ilde\chi_1^\pm)$
- $m(\tilde{u}_i) \sim m(\tilde{d}_i) \sim m(\tilde{c}_i) \sim m(\tilde{s}_i) \gg m(\tilde{\ell}_i)$
- $m(\tilde{u}_i) \sim m(\tilde{d}_i) \sim m(\tilde{c}_i) \sim m(\tilde{s}_i) > (0, 6_{\text{MSUGRA}} \dots 0, 8_{\text{GMSB}}) m(\tilde{g})$
- $m(\tilde{u}_L) \ge m(\tilde{u}_R) \dots m(\tilde{s}_L) \ge m(\tilde{s}_R)$ and $m(\tilde{e}_L) \ge m(\tilde{e}_R), m(\tilde{\mu}_L) \ge m(\tilde{\mu}_R)$ as $M_L^2 \sim M_R^2 + 0, 5m_{1/2}^2$.
- ${old p} \ m({
 m h}^0) \lesssim 150 \ {
 m GeV} \ll m({
 m A}), m({
 m H}^{\pm}), m({
 m H}^0)$

SUSY search

Production in pairs, decay to other SUSY particle (if *R* conserved)

Lightest (LSP) stable, neutral, not observable Signal: missing energy

Hypothetical SUSY decays (LSP = $\tilde{\chi}_1^0$):

- squark: $\tilde{q} \rightarrow q + \tilde{g}; q + \tilde{\chi}_1^0$
- slepton: $\tilde{\ell} \rightarrow \ell + \tilde{\chi}_1^0$
- gluino: $\tilde{g} \rightarrow q + \overline{q} + \tilde{\chi}_1^0$; $g + \tilde{\chi}_1^0$
- wino: $ilde{W}
 ightarrow ext{e} + u_{ ext{e}} + ilde{\chi}_1^0$

Dezső Horváth: Search for SUSY at the LHC

Simplified Models

Few on-shell particles, simple topology and decays Not model-independent, but possibly associated with several models. Possible new physics on well understood SM-base

What can we learn of such analysis?

- Boundaries of search sensitivity, both for data analysis and for new theories.
- Characterizing new physics signals: what models can be associated?
- Limits on more general models: from possible cross-sections.

Dezső Horváth: Search for SUSY at the LHC

Simplified models for SUSY searches

Basic topologies with no lepton and missing energy (signal of Lightest SUSY Particle, LSP):

Dezső Horváth: Search for SUSY at the LHC

Search methods: examples

• α_T search for early discovery in (forced) 2-jet events $(E_T(J_1) > E_T(J_2))$: Cut $\alpha_T = \frac{E_T(J_2)}{M_T(J_1,J_2)}$ $- E_T(J_2)$

 $= \frac{1}{\sqrt{(E_T(J_1) + E_T(J_2))^2 - (p_x(J_1) + p_x(J_2))^2 - (p_y(J_1) + p_y(J_2))^2}}$ Exclusive 2-jet, inclusive 3-jet search

- Jets + H_T for > 2 jets, inclusive Scalar mom. sum: $H_T = \sum_i |\underline{p}_T(J_i)|;$ Missing transverse mom.: $MHT = H_T = |-\sum_i \underline{p}_T(J_i)|$
- Razor search: test kinematic consistency for pair production of heavy particles Two jets (inv. mass M_R) + 0 or 1 lepton

Experimental limits, constraints

No SUSY phenomenon observed, the data limit the parameter space

- LEP, Tevatron, LHC: Higgs sector
 - Mass of SM Higgs from direct searches $M_{
 m H} = 125~{
 m GeV};~~{
 m H} \sim {
 m h}^0$
 - Fitting electroweak data
 - Search for neutral Higgs bosons (h and A)
- $BR(b \rightarrow s\gamma)$ measurements at B-factories
- Anomalous magnetic moment of the muon (BNL)
- Satellite expts WMAP and Planck: density of dark matter (DM), indirect
- Direct searches for DM with ν -detectors and AMS2

Dezső Horváth: Search for SUSY at the LHC

Natural SUSY?

- Light (~ 1 TeV) SUSY particles help to eliminate the hierarchy problem and keep the lightest Higgs-boson light ($\tilde{h}_{MSSM}^0 = H_{SM}$).
- Heavy SUSY particles add huge 2nd-order (log) corrections, ruining the hierarchy elimination.
- Unfortunately, naturalness is less and less probable as the lower limits on SUSY masses grow.

E.g., $ilde{{
m t}}$ is assumed to be the lightest squark, now having $m(ilde{{
m t}})\gtrsim 1$ TeV, and a possible decay of the gluino is to ${
m t} ilde{{
m t}}$...

CMS SUSY summary plot, 2017

Selected CMS SUSY Results* - SMS Interpretation ICHEP '16 - Moriond '17 PP - 0.0 - 49) SUS-16-014 SUS-16-033 OUNHT PP - 0 0.0 - 49) SUS-18-018 SUS-TS-036 00MT2 SUS-16-014 (US-16-03.3 ORMHT) m -88.8 - 16 SUS-16-018 SUS-TG-038 00MTD m -00.0 - 66 P -88.8 - 56 848-18-018 00 848-18-014 9L15-16-033 0EMHTS PP -8 8.8 -11 SUS-16-015 SUS-16-036 06MTD) PP -0 0.0 - 11 SUS-10-016 OF PP -0 9.9 - 11 Gluino SUB-18-019 SUB-16-042 18 h m) PP 0 0.0 - tt PP-0 0.0 -tt : 858-10-020 SEE-16-035 2 same-sign SUS-16-022 SUS-16-04 T Multilepton PP-09.0-tt) PP -0 9.0 - 11 1205-18-030 0 PP-00.0 - tt 00.0 -tt -tej Las = 20 Cin V PP - 0 9. 0 - bt 001 - 00 W US-16-019 SUS-16-042 18 1 of SUS-16-020 SUS-16-03.6 2 same-sign 1.0.5 PP - 0 0 . 0 - 001 - 00 W PP - 0 9 . 9 - 991 - 99 W 5U5-16-020 8U5-16-035 2 seme-sign 66.6 - mi-' 1.) -- 44 (WED) SUS-16-014 (CUS-16-033 00MHT) z=0.5 -99(WD) 5U5-16-022 0015-16-041 Multileo to -- 481 X will f p -H .I -t SUS-16-014 SUS-16-03.3 OFMIN p -tt,t-t SUS-16-018 (EIS-16-03.6 00MT2) p-it,t-t SU8-16-016 OF p-tt,t-t SU8-16-027 SUS-17-00121 opposite-sign p-it i -t i 508-16-028 508-16-05111 m-tt,t-t i SU8-16-029 SUS-16-04.8 OF m-tt ,t -t i 808-16-030 0 pp-itt, t - e z Max exclusion for M_{states} - M _{Lep} < 80 GeV) PP-11.1 → 0 010012 Max exclusion for M_{max} - M up < 80 GeV) **CMS** Preliminary pp-itt,t -e occius ion for M Max exclusion for Massa - M up < 80 GeV) pp-it,t-bff (+body SUS-16-025 SUS-16-04 II 22 and pp→tt,t→bff (4body pp→tt,t→bff (4body Max exclusion for M_____ • M up < 80 GeV) Max exclusion for M____ • M up < 80 GeV) SU6-16-029 SU8-16-0411 0 √s = 13TeV \$538-16-031 11 april pp tt,t -i b-bW 508-16-026 505-16-05111 X 10.5 SUS-16-029 SUS-16-04.9 0 1.00 pp -tt ,t -1; b-- bW' 2-0.5 2-0.5 pp-tt.t $L = 12.9 \text{ fb}^{-1} L = 35.9 \text{ fb}^{-1}$ 2 rep per to-align pp -bb, b + b SUB-10-014 01-10-015 DOMHT pp -- bb, b -- b \$48-16-018 SUS-16-03.0 OFMT2 pp -bb, b -b SUB-10-016 OF pp -bb, b +b q +q,(u, de,s) PP 44.4 +4 : SUS-16-014 SUS-16-03 3 00MHT q +q (u de.s) PP 44.4 +42 \$48-16-018 \$ES-TE-036 OFMT2 1.0 1 1 - 1 - 1 I Sec. 60 -101 $\mathcal{D}_{i,j}$ 2001 2 x=0.5 $\begin{array}{c} p_{0} \rightarrow p_{1} & p_{2} \rightarrow w_{2} & p_{3} \\ p_{0} \rightarrow p_{1} & p_{2} \rightarrow w_{2} & p_{3} \\ p_{0} \rightarrow p_{2} & p_{3} \rightarrow w_{1} & p_{3} \\ p_{0} \rightarrow p_{1} & p_{2} \rightarrow w_{2} & p_{3} \end{array}$ For decays with intermediate mass, mintermediate = x · mMother + (1-x) · mLsp Mass exclusion for M_{mass} - M _{up} < 40 GeV) 2000 200 400 600 800 1000 1200 1400 1600 1800 Mass Scale [GeV] *Observed limits at 95% C.L. - theory uncertainties not included Only a selection of available mass limits. Probe *up to* the quoted mass limit for m =0 GeV unless stated otherwise

Simplified Model Spectrum (SMS) topologies

Dezső Horváth: Search for SUSY at the LHC

(Wigner/

CMS limits, 2020: gluino pairs

t the LHC BSM School, ELTE, Budapest, 2021.02.02.

Dezső Horváth: Search for SUSY at the LHC

(wigner

alomki

ATLAS SUSY summary plot, 2017

Dezső Horváth: Search for SUSY at the LHC

CMS: search for exotica

Dezső Horváth: Search for SUSY at the LHC

Search for charged Higgs bosons

M. Aaboud *et al.* [ATLAS Collaboration], Search for charged Higgs bosons produced in association with a top quark and decaying via $H^{\pm} \rightarrow \tau \nu$ using pp collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector, Phys. Lett. B 759 (2016) 555 A. M. Sirunyan *et al.* [CMS Collaboration], Search for charged Higgs bosons produced in vector boson fusion processes and decaying into a pair of W and Z bosons using proton-proton collisions at sqrt(s) = 13 TeV, arXiv:1705.02942 [hep-ex].

BSM School, ELTE, Budapest, 2021.02.02.

Dezső Horváth: Search for SUSY at the LHC

b \rightarrow **s** γ **: FCNC decay**

Flavour-changing neutral current, forbidden in SM

Pure loop effect New physics could affect CLEO, BELLE, BABAR:

 $rac{\Gamma(\mathrm{b}{
ightarrow}\mathrm{s}\gamma)}{\Gamma(\mathrm{b}{
ightarrow}\mathrm{Xe}
u)}=$

$$egin{pmatrix} +0,50\ -0,44 \end{pmatrix} imes 10^{-3} \end{cases}$$

SM: $(3,22\pm0,09) imes10^{-3}$

Agrees with SM ↓ limits MSSM

wigner

atomki

CLEO, Cornell

BELLE, Tsukuba

Dezső Horváth: Search for SUSY at the LHC

BSM School, ELTE, Budapest, 2021.02.02.

BABAR, Stanford

CMS H $\rightarrow \gamma \gamma$ in *The Big Bang Theory*

It would be nice if in the (not too distant) future we could see an observed SUSY event in a popular TV show!

Dezső Horváth: Search for SUSY at the LHC

wigner

atom

Conclusion

- We have observed the Standard Model Higgs boson or (unfortunately, much less probably) a Higgs boson of a more general model.
- All measured properties are consistent with the predictions for the SM Higgs-boson with a mass of 125 GeV.
- Let us hope for some deviation from the Standard Model (although none seen yet).
- The simplest SUSY models do not seem to be supported by experimental data (g-2, LEP, WMAP, LHC, ...)
- We are looking for and hoping to find new physics (SUSY, Dark Matter, extra Higgs bosons, ...) at the LHC.

Thanks for your attention!

Dezső Horváth: Search for SUSY at the LHC

Migner