Is the Higgs elementary or composite?

Daniel Nogradi

ELFT Winter School 2021 Budapest

Motivation

The Standard Model of particle physics is extraordinarily precise both experimentally and theoretically

Have already seen during this school of course ...

Motivation

The visible Universe is correctly described by the Standard Model

Experimental and theoretical matching is in some cases $1: 10^{12}$

Yet the theory is very simple (in some sense...)

Motivation

Last missing piece: Higgs boson

- July 4, 2012, LHC CERN, experimental confirmation
- 2013, Nobel prize to Peter Higgs, Francois Englert for theory

Motivation

But!

Gravity is not included \rightarrow
Standard Model expected to break down $\wedge_{\text {cutoff }}=10^{19} \mathrm{GeV}$
No problem for accelerators, etc.: sensitive to $\sim 10^{4} \mathrm{GeV}$

But as a result elementary Higgs boson mass is actually (in GeV)
$125=10000000000000000125-10000000000000000000$

-
$6 \cdot 10^{7}$.

Motivation

Higgs mass (in GeV)
$125=10000000000000000125-10000000000000000000$

$$
m_{\text {Higgs }}^{2}=m_{\text {bare }}^{2}-\mathrm{const} \Lambda_{\text {cutoff }}^{2}
$$

Because of additive renormalization of mass
Top loop most significant

Even though theory is renormalizable, cutoff is physical

Motivation

This is called Naturalness problem or fine tuning problem

Why is it present for elementary scalar?

No symmetry to protect $m_{\text {Higgs }}=0 \rightarrow$ additive mass renormalization

For example fermion masses are protected by chiral symmetry \rightarrow multiplicative renormalization \rightarrow no Naturalness problem

Motivation

See for more: https://inspirehep.net/literature/144074

1979 Gerard 't Hooft: Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,

Citations per year

Motivation

Why is this a problem?

Imagine tax laws are: if profits below $\$ 200 \rightarrow$ no tax, if profits above $\$ 200 \rightarrow 30 \%$ tax

- income: \$6000, costs: \$5500
profits: $\$ 500 \rightarrow 30 \%$ tax \rightarrow natural
- income: \$600, costs: \$500
profits: $\$ 100 \rightarrow$ no tax \rightarrow natural
- income: \$2000, costs: \$1900
profits: $\$ 100 \rightarrow$ no tax \rightarrow natural
- income: \$100.000, costs: \$80.000 profits: $\$ 20.000 \rightarrow 30 \%$ tax \rightarrow natural

Motivation

Why is this a problem?

Imagine company filing with IRS (or NAV in Hungary):

- Revenue: \$ 10 thousand quadrillion +125
- Costs: \$ 10 thousand quadrillion
- Profit $=$ Revenue - Costs $=\$ 125 \rightarrow$ no tax

IRS (or NAV) might not say definitely something is illegal, but would find it suspicious ...

Motivation

Similarly, such a fine tuning of the Higgs mass: suspicious

Haven't seen anything like this elsewhere in Nature

Fine Tuning Problem - Hierarchy Problem - Naturalness Problem

Only present if elementary Higgs, not if composite!

Example: QCD, composite hadrons, no problem

Motivation

Suggestion: Higgs is a composite particle

Basic building blocks can build up other composite particles

Similarly to QCD, lots of hadrons

Prediction for LHC: lots of new particles

Key: testable

Motivation

Not the only possible solution to Fine Tuning Problem

Example: supersymmetry

Challenge to all proposals: reproduce the extraordinarily precise results we already know from Standard Model \rightarrow at low energies extensions of the Standard Model should not differ much from Standard Model, only at higher energies $\sim O(10 \mathrm{TeV})$

Also: should provide testable predictions for LHC

Motivation

Summary: replace elementary Higgs by composite particle of new, so far undetected, gauge theory coupled to new, so far undetected, fermions

Sometimes called technigluons, technifermions (but not always)

Large set of ideas

Often use QCD terminology and QCD analogy

- Motivation, Naturalness (done already)
- QCD review
- Elementary quarks, gluons
- Composite hadrons
- No fine tuning problem
- Symmtries and their breaking (chiral symmetry): explicit, spontaneous, anomalous
- Spontaneous breaking, Goldstone theorem, effective theory, chiral perturbation theory
- Composite Higgs models
- New elementary building blocks, new gauge fields and new fermions
- Predictions of new particles
- Two large classes of models: Little Higgs, Strong Dynamics
- Problems

QCD review

Elementary quarks and gluons

$$
\mathcal{L}=-\frac{1}{2 g^{2}} \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}+\sum_{i=1}^{N_{f}} \bar{\psi}_{i}\left(D+m_{i}\right) \psi_{i}
$$

g : single dimensionless coupling, D Dirac operator, m_{i} masses for each flavor $i=1, \ldots, N_{f}$

In Nature: $N_{f}=6,(u, d, s, c, b, t)$

Symmetries: vector + axial

QCD review - symmetries

$$
\delta \psi_{i}=i \omega_{i j} \psi_{j} \quad \delta \bar{\psi}_{i}=-i \bar{\psi}_{j} \omega_{j i}
$$

Vector symmetry, $\omega_{i j}$ Hermitian, $U=e^{i \omega}$ unitary $\rightarrow S U\left(N_{f}\right)$

Symmetry even if $m_{i} \neq 0$

$$
\delta \psi_{i}=i \omega_{i j} \gamma_{5} \psi_{j} \quad \delta \bar{\psi}_{i}=i \bar{\psi}_{j} \gamma_{5} \omega_{j i}
$$

Axial symmetry, $\omega_{i j}$ Hermitian, $U=e^{i \omega}$ unitary $\rightarrow S U\left(N_{f}\right)$
Only symmetry if $m_{i}=0$, reminder: $\left\{\gamma_{5}, \gamma_{\mu}\right\}=0,\left\{\gamma_{5}, D\right\}=0$

QCD review - symmetries

$$
S U\left(N_{f}\right) \times S U\left(N_{f}\right)
$$

Symmetry if $m_{i}=0$: the Lagrangian \mathcal{L} is invariant

Spontaneous symmetry breaking: \mathcal{L} (or Hamiltonian) invariant with some G but vacuum $|0\rangle$ is not

Subgroup $H \subset G$ leaves $|0\rangle$ invariant: G / H coset

QCD review - spontaneous symmetry breaking

Goldstone theorem: there are as many massless particles as the dimension of G / H : one for each breaking direction

Breaking direction is flat because \mathcal{L} invariant \rightarrow no quadratic term \rightarrow massless mode

QCD review - spontaneous chiral symmetry breaking

In massless QCD: $G=S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ broken spontaneously, $H=S U\left(N_{f}\right)$ corresponding to axial

There are $N_{f}^{2}-1$ massless particles \rightarrow pions
Two light flavors, (u, d), there are 3 pions

Order parameter $\Sigma=\langle 0| \bar{\psi}_{i} \psi_{i}|0\rangle \neq 0$

If symmetry would not be spontaneously broken: $\Sigma=0$

QCD review - explicit symmetry breaking

In QCD $m_{i} \neq 0$ but for (u, d, s) they are small, with (u, d) even smaller
\mathcal{L} is not invariant with $m_{i} \neq 0$ but change $\delta \mathcal{L}$ small

Massless Goldstones become massive but in $m_{i} \rightarrow 0$ limit $M_{\text {Goldstone }}=$ 0

$$
M_{\text {Goldstone }} \sim m^{\alpha}(1+\ldots)
$$

With $\alpha>0$

QCD review - symmetry breaking

Consequence for the spectrum of particles

Observable particles: gauge singlet because of confinement: hadrons

$\Lambda=\wedge_{Q C D}$ dynamically generated scale

QCD review - symmetry breaking

QCD with $N_{f}=2$ flavors $(u, d): 3$ Goldstones: 3π

QCD with $N_{f}=3$ flavors $(u, d, s): 8$ Goldstones: $3 \pi, 3 K, \eta, \eta^{\prime}$

More about η, η^{\prime} Iater

In QCD: $m_{\pi}=135 \mathrm{MeV}, m_{K}=497 \mathrm{MeV}, m_{\varrho}=775 \mathrm{MeV}$
$m_{u, d}=O(M e V)$ really small, m_{s} order of magnitude larger

Goldstone picture applies to 3π, less so to $3 K$

QCD review - symmetry breaking

Summary: with $N_{f}=2$ QCD there are 3 light particles $M_{\pi} \sim m^{\alpha}$ and all the rest are heavy $M \sim \wedge$

QCD review - Iow energy effective theory

3π very light \rightarrow Iow energy effective theory only for them

Same situation in general with G / H spontaneous symmetry breaking and Goldstone bosons

What can this low energy EFT be?

Start from the original symmetry $S U\left(N_{f}\right) \times S U\left(N_{f}\right)$, look for a variable transforming appropriately and representing the pions (Goldstones)

$$
U \in S U\left(N_{f}\right) \quad\left(g_{1}, g_{2}\right) \in S U\left(N_{f}\right) \times S U\left(N_{f}\right) \quad U \rightarrow g_{1} U g_{2}^{-1}
$$

In field theory $U(x)$

What is $\mathcal{L}_{\text {eff }}(U)$?

QCD review - Iow energy effective theory

What is $\mathcal{L}_{e f f}(U)$? (assume $m_{i}=m$)

- Dimension 4
- Lorentz invariant scalar
- Contain 2 derivatives for kinetic term
- $S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ invariant if $m=0$
- $S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ breaking to $S U\left(N_{f}\right)$ if $m \neq 0$

QCD review - Iow energy effective theory

$$
\mathcal{L}_{e f f}=\frac{F^{2}}{2} \operatorname{Tr} \partial_{\mu} U(x) \partial_{\mu} U^{\dagger}(x)-m \Sigma \operatorname{Re} \operatorname{Tr} U(x)
$$

U is dimensionless, $\operatorname{dim}(F)=1, \operatorname{dim}(\Sigma)=3$ (remember $\left.\Sigma=\bar{\psi}_{i} \psi_{i}\right)$

Note: F is decay constant of π

Last term $\operatorname{Tr} U$ breaks $S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ to $S U\left(N_{f}\right)$:

$$
\operatorname{Tr} U \rightarrow \operatorname{Tr}\left(g_{1} U g_{2}^{-1}\right)=\operatorname{Tr}\left(g_{2}^{-1} g_{1} U\right)
$$

equals $\operatorname{Tr} U$ only if $g_{1}=g_{2} \rightarrow S U\left(N_{f}\right) \subset S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ unbroken
$\mathcal{L}_{\text {eff }}$ fixed by symmetry considerations

QCD review - Iow energy effective theory

Low energy effective theory: should be good description if we only ask about properties of pions
$U(x)=e^{i T_{a} \phi_{a}(x) / F}$ where ϕ_{a} scalar fields, T_{a} generators of $S U\left(N_{f}\right)$, $a=1 \ldots N_{f}^{2}-1$

In calculations expand $U=1+i T_{a} \frac{\phi_{a}}{F}-T_{a} T_{b} \frac{\phi_{a} \phi_{b}}{2 F^{2}}+\ldots$

Assume normalized basis $\operatorname{Tr} T_{a} T_{b}=\delta_{a b}$

Home work

Expand $\mathcal{L}_{e f f}$ to quadratic order in ϕ

Obtain free theory of scalar fields with mass term
\rightarrow at low energy pions are free

Obtain α in $M_{\text {Goldstone }}=M_{\pi} \sim m^{\alpha}$

Low energy EFT can give properties of π

This was simple example, many more can be given

Note: $\mathcal{L}_{\text {eff }}$ only leading order EFT, there are loop corrections

QCD review - anomalous symmetry breaking

Note: there is a $U(1)$ component for both vector and axial, flavor singlet

$$
\begin{array}{cc}
\delta \psi_{i}=i \psi_{i} & \delta \bar{\psi}_{i}=-i \bar{\psi}_{i} \\
\delta \psi_{i}=i \gamma_{5} \psi_{i} & \delta \bar{\psi}_{i}=i \bar{\psi}_{i} \gamma_{5}
\end{array}
$$

The axial $U(1)$ is anomalous

Anomalous symmetry breaking: \mathcal{L} invariant but path integration measure not invariant

Similar to explicit breaking
No Goldstone theorem $\rightarrow \eta^{\prime}$ not light but heavy, $M_{\eta^{\prime}}=958 \mathrm{MeV}$

Summary so far: QCD has very special spectrum, light particles separated from heavy particles

All of this because of Goldstone theorem, spontaneous symmetry breaking

No elementary particles in spectrum

No fine tuning, everything is natural, no quadratic divergences

Motivation

Class of theories considered:
new non-abelian gauge theory sector + new (massless) fermions

Spontaneous chiral symmetry breaking \rightarrow electroweak symmetry breaking

Goldstone bosons \rightarrow eaten by W and Z

Spin 0 scalar composite particle (like σ-meson): Higgs

Non-perturbative dynamics (like QCD)

Motivation

This is an old idea! (Weinberg, Susskind, ..., Iate 70's)

Many early problems

- scaled up QCD doesn't work $\left(\wedge_{Q C D}=\wedge \sim O(100) G e V\right)$
- S-parameter large?
- Higgs heavy (or Higgsless)
- many new massless particles?
- large FCNC vs. quark masses

Motivation

Problems may be due to QCD intuition and/or perturbation theory

We have lattice tools now to address them

Let's use lattice QCD techniques to do first principle calculations

Close to conformal window \rightarrow very different properties from QCD

Motivation

Typical quantity: $\langle\mathcal{O}(x) \mathcal{O}(0)\rangle$

QFT vacuum expectation value: quantum mechanics for infinitely many degrees of freedom

$$
\langle\mathcal{O}(x) \mathcal{O}(0)\rangle=\frac{\int D A_{\mu} D \psi D \bar{\psi} \mathcal{O}(x) \mathcal{O}(0) e^{-S}}{\int D A_{\mu} D \psi D \bar{\psi} e^{-S}}
$$

Perturbation theory or other analytical approach doesn't work

Numerical evaluation (as in QCD)

Motivation

Space-time lattice \rightarrow finite number of variables \rightarrow path integral finite dimensional

Reasonable lattice: $32^{4} \rightarrow 33554432$ dimensional integral (for SU(3))

Even numerical integration is hopeless

Only approach: stochastic evaluation \rightarrow Monte-Carlo methods

Motivation

Key numerical difficulty: fermions (Grassmann variables)

Numerical cost: orders of magnitude more than without fermions

Main ingredient: inversion of Dirac operator

Dirac equation $D \psi=\eta$, where $D=\gamma_{\mu}\left(\partial_{\mu}+A_{\mu}\right)+m$
Need to invert $10^{7} \times 10^{7} \ldots \ldots .10^{10} \times 10^{10}$ matrices

Motivation

High performance computing

Supercomputers - very expensive \$\$\$

Motivation

High performance computing

Much better price/performance

Motivation

Computers give vacuum expectation values with statistical errors

Can extract physical quantities \rightarrow compare with experiment

Key steps:

- (technical) $m \rightarrow 0$ limit need massless Goldstones, eaten by W and Z
- N^{4} lattice, $N \rightarrow \infty$, infinite volume extrapolation
- lattice spacing $a \rightarrow 0$, continuum limit

All 3 are tricky in their own way

Continuum

```
Lattice - continuum limit
```


Lattice - continuum limit

Lattice - continuum limit

Lattice - continuum limit

Continuum

Motivation

Many theories to choose from

Hope to convince you that $S U(3)$ with

$$
N_{f}=2 \text { and } R=\text { sextet is a minimal model }
$$ and is promising phenomenologically

Outline and summary

- Sextet model - expectations, conformal window
- Particle spectrum from lattice
- Light scalar - Higgs
- Running coupling
- Conclusion (caveats, difficulties, questions)

Why $S U(3)$ sextet $N_{f}=2$?

Dietrich, Sannino, Tuominen: hep-ph/0405209, hep-ph/0611341

- Asymptotically free
- Perturbatively: just below conformal window (Schwinger-Dyson)
- Slowly changing coupling? (FCNC vs. quark masses)
- Perturbatively: small S-parameter
- Complex representation: exactly 3 Goldstones \rightarrow eaten by W and Z

Why $S U(3)$ sextet $N_{f}=2$?

Very similar to $N_{f}=2$ QCD
$R=$ fundamental replaced by $R=$ sextet $=2-$ index - symm

But very different properties
$f_{\pi}=250 \mathrm{GeV}$
Much closer to the conformal window than QCD

Conformal window

$S U(N)$ gauge theory with N_{f} fermions in R

$$
\begin{aligned}
\beta(g) & =\mu \frac{d g}{d \mu}=\beta_{1} \frac{g^{3}}{16 \pi^{2}}+\beta_{2} \frac{g^{5}}{\left(16 \pi^{2}\right)^{2}} \\
\beta_{1} & =-\frac{11}{3} N+\frac{4}{3} N_{f} T(R) \\
\beta_{2} & =-\frac{34}{3} N^{2}+\left(\frac{5}{3} N+C_{2}(R)\right) 4 T(R) N_{f}
\end{aligned}
$$

Asymptotic freedom: $\beta_{1}<0$, perturbation theory reliable

$$
N_{f}<\frac{11 N}{4 T(R)}
$$

Asymptotic freedom

Conformal window, N_{f}-dependence

Non-trivial fixed point $\beta\left(g_{*}\right)=0$:

Exists if $\beta_{1}<0$ and $\beta_{2}>0$
Banks-Zaks
$g_{*}=4 \pi \sqrt{-\frac{\beta_{1}}{\beta_{2}}}$
$N_{f}^{l o w}=\frac{34 N^{2}}{4 T(R)\left(5 N+3 C_{2}(R)\right)}<N_{f}<\frac{11 N}{4 T(R)}=N_{f}^{u p}$
This N_{f} range is the conformal window in 2-Ioop approximation

Fixed point g_{*} an IR fixed point.

Infrared fixed point

Conformal window, N_{f}-dependence

How trustworthy is this?
$N_{f}^{l o w}=\frac{34 N^{2}}{4 T(R)\left(5 N+3 C_{2}(R)\right)}<N_{f}<\frac{11 N}{4 T(R)}=N_{f}^{u p}$
Upper end of the conformal window: loss of asymptotic freedom \rightarrow perturbation theory is trustworthy, even 1-loop is enough
$g_{*}=4 \pi \sqrt{-\frac{\beta_{1}}{\beta_{2}}}$ is small because β_{1} is small
Lower end of the conformal window: 2-loop is suspect
$g_{*}=4 \pi \sqrt{-\frac{\beta_{1}}{\beta_{2}}}$ is large because β_{2} is small

Conformal window, N_{f}-dependence

Where we know what we are doing: close to upper end of the conformal window
E.g. $N=3, R=$ fund, $N_{f}^{u p}=16.5$
E.g. $N=3, R=$ sextet, $N_{f}^{u p}=3.3$

For example $N_{f}=16$ fundamental or $N_{f}=3$ sextet: 2-loop result is probably okay, a non-trivial weakly interacting 4D CFT

Conformal window, N_{f}-dependence

Even though 2-loop result is unreliable for $N_{f}^{l o w}$ the lesson is that there exists an $N_{f}^{l o w}$ but we can't compute it in perturbation theory

Is real $N_{f}^{l o w}$ smaller or larger than 2-Ioop $N_{f}^{l o w}$?
Probably Iarger.

As N_{f} decreases from upper end of conformal window g_{*} grows \rightarrow if not too large still CFT \rightarrow as it gets large chiral symmetry breaks \rightarrow scale is generated \rightarrow conformal symmetry lost \rightarrow no IR fixed point \rightarrow we are outside the conformal window.

Conformal window, N_{f}-dependence summary

N_{f} increases from left to right

Examples

Perturbative 2-loop $N_{f}^{\text {low }}$
$S U(2)$

- $R: j=1 / 2, \quad 5.551 \ldots<N_{f}<11$
- $R: j=1, \quad 1.0625<N_{f}<2.75$
- $R: j=3 / 2, \quad 0.32<N_{f}<1.1$

Examples

Perturbative 2-Ioop $N_{f}^{l o w}$
$S U(3)$

- $R=$ fund, $\quad 8.05 \ldots<N_{f}<16.5$
- $R=$ sextet, $1.224<N_{f}<3.3$
- $R=a d j, \quad 1.0625<N_{f}<2.75$

N_{f} just below lower end of conformal window

Non-perturbative (lattice) studies

We only study the model in isolation as $S U(3)$ gauge theory with $N_{f}=2$ fermions in sextet

Forget about rest of Standard Model

Questions for this talk

- Does chiral symmetry breaking happen?
- Particles in the spectrum? Light Higgs?
- Running coupling (is it walking?)

Lattice setup

Particle spectrum

- Finite lattice spacing a
- Finite volume L
- Finite fermion mass $m>0$
- Chiral limit $m \rightarrow 0$ in large volumes
- Decrease lattice spacing (2 values at the moment)
- Express things in chiral limit in dimensionless combinations
- $f_{\pi}=250 G e V$ scale setting

Lattice setup

Particle spectrum

- Staggered fermions (fast!)
- Need rooting trick for $N_{f}=2$ from QCD: as long as m finite, not too small, it's okay
- Stout-improvement
- Symanzik tree level improved gauge action
- $\beta=3.20$ and 3.25

Lattice

Particle spectrum (staggered fermions)

Using QCD terminology consider

$$
m_{\pi} \quad f_{\pi} \quad m_{a_{0}} \quad m_{\rho} \quad m_{a_{1}} \quad m_{N} \quad m_{\eta^{\prime}} \quad m_{f_{0}}=m_{0++}=m_{\text {Higgs }}
$$

Lattice - finite volume effects

Already at $\beta=3.20$ and $m=0.003,32^{3}$ is not enough, $m_{\pi} L>6-7$ needed

Lattice - pseudo-scalar meson

Unable to resolve chiral logs

Lattice - pseudo-scalar meson

Much stronger m-dependence than in QCD

Lattice - pseudo-scalar meson

Note the different slopes, in QCD parallel

Lattice - vector mesons ϱ and a_{1}

Within reach of LHC Run 2

Small splitting: $S \sim V V-A A$, small?

Lattice - scalar mesons f_{0} and a_{0}

Remember f_{0} is the Higgs!
Difficult channel, disconnected fermion graphs $\beta=3.25$ preliminary, topology?

Lattice - baryons

Baryon states very diferent from QCD
$3 \otimes 3 \otimes 3=1 \oplus 2 \times 8 \oplus 10$
$6 \otimes 6 \otimes 6=1 \oplus 2 \times 8 \oplus 10 \oplus \overline{10} \oplus 3 \times 27 \oplus 28 \oplus 2 \times 35$

But!
singlet in QCD: $\quad \varepsilon_{a b c} \psi_{a} \psi_{b} \psi_{c}, \quad \epsilon_{a b c}$ anti-symmetric
singlet in sextet:
$a, b, \ldots=1,2,3$
$\varepsilon_{a b c} \varepsilon_{d e f} \psi_{a d} \psi_{b e} \psi_{c f}=T_{A B C} \psi_{A} \psi_{B} \psi_{C}$
$A, B, C=1,2,3,4,5,6$
$T_{A B C}$ symmetric

Lattice - baryons

As a result, very different wave functions
"color": symmetric, spin-flavor: anti-symmetric

Non-relativistic notation (suppress "color" index):

$$
\begin{gathered}
|\psi\rangle=|\uparrow u, \uparrow d, \downarrow u\rangle+|\downarrow u, \uparrow u, \uparrow d\rangle+|\uparrow d, \downarrow u, \uparrow u\rangle- \\
|\downarrow u, \uparrow d, \uparrow u\rangle-|\uparrow d, \uparrow u, \downarrow u\rangle-|\uparrow u, \downarrow u, \uparrow d\rangle
\end{gathered}
$$

Lattice - baryons

Dark matter?

Lattice - η^{\prime}

Extract from gluonic operator

$$
q(x)=\frac{1}{32 \pi^{2}} \varepsilon_{\mu \nu \rho \sigma} F_{\mu \nu}(x) F_{\rho \sigma}(x)
$$

$$
-\langle q(x) q(y)\rangle \sim \frac{K_{1}\left(m_{\eta^{\prime}} r\right)}{r} \quad r=|x-y|
$$

Measure on gradient flow \rightarrow less noisy

Lattice - η^{\prime}

$\beta=3.20$, preliminary

Lattice - η^{\prime}

$\beta=3.25$, preliminary

Spectrum summary 1

$$
\left.\begin{array}{rlrl}
m_{f_{0}} / f_{\pi} & \sim 1-2 & m_{f_{0}} & \sim 250-500 \mathrm{GeV} \\
m_{a_{0}} / f_{\pi} & \sim 6-8 & m_{a_{0}} & \sim 1.5-2 \mathrm{TeV} \\
m_{\varrho} / f_{\pi} & \sim 7-8 & m_{\varrho} & \sim 1.8-2 \mathrm{TeV} \\
m_{a_{1}} / f_{\pi} & \sim 10-11 & m_{\varrho} & \sim 2.5-2.7 \mathrm{TeV} \\
m_{N} / f_{\pi} & \sim 11-14 & & m_{N} \sim 2.7-3.5 \mathrm{TeV} \\
m_{\eta^{\prime}} / f_{\pi} & \sim 13-18 & & m_{\eta^{\prime}}
\end{array}\right)
$$

Higgs at $250-500 \mathrm{GeV}$? ?

What we measure is not "the" Higgs

Coupling to SM: top loop

$$
m_{\text {Higgs }}^{2}=m_{\text {sextet } f_{0}}^{2}-\text { const } m_{\text {top }}^{2}
$$

Foadi, et al.

Other particles expected to be effected less

Spectrum summary 2

Model seems consistent with $\chi P T$

Model gives rise to a light scalar

New particles with definite properties in 2-3 TeV region

Potential dark matter candidate as well

Important caveats

- Slow topology change
- Unestimated systematics
- Only $20-30 \%$ change in lattice spacing
- Coupled scalar-pion dynamics ignored in $\chi P T$
- etc.

More lattice results - running coupling

Running scale: μ

Need: $1 / L<\mu<1 / a$

Separating 3 scales difficult, instead

$$
1 / L=\mu<1 / a
$$

Running scale is finite volume

Running coupling

Running scale: $\mu=1 / L$, using gradient flow

$$
g^{2}(L) \sim\left\langle t^{2} E(t)\right\rangle \quad c=\frac{\sqrt{8 t}}{L}=\mathrm{const}
$$

Discrete β-function: $\frac{g^{2}(s L)-g^{2}(L)}{\log \left(s^{2}\right)} \quad s=3 / 2,2$

Running coupling, extrapolated to continuum

Running coupling summary (for sextet)

No sign of fixed point in the $0<g^{2}<6.5$ range

3-loop fixed point in $\overline{\mathrm{MS}}: g^{2}=6.28$

4-loop fixed point in $\overline{M S}: g^{2}=5.73$

Schwinger-Dyson: no fixed point

Summary and questions

- Sextet model is a minimal composite Higgs model
- Particle spectrum shows chiral symmetry breaking
- Light scalar emerges
- Running coupling consistent with it

Summary and questions

- Lower end of conformal window \rightarrow light scalar?
- Slow running \rightarrow light scalar?
- Why light? Dilatation symmetry?
- $m_{\rho} / f_{\pi} \sim 8$ for $S U(3)$ largely N_{f} and R independent?

Work in progress and future outlook

Haven't talked about lots of things

- Chiral condensate from Dirac eigenvalues (GMOR)
- Mass anomalous dimension
- Thermodynamics
- etc.

Thank you for your attention!

