

INTRODUCTION TO SARAH

ELFT WINTER SCHOOL

TIMO J. KÄRKKÄINEN

EÖTVÖS LORÁND UNIVERSITY

4.2.21

WHAT IS SARAH?

"SARAH is a Mathematica package for building and analyzing SUSY and non-SUSY models. It calculates all vertices, mass matrices, tadpoles [sic] equations, one-loop corrections for tadpoles and self-energies, and two-loop RGEs for a given model. SARAH writes model files for FeynArts, CalcHep/CompHep, which can also be used for dark matter studies using MicrOmegas, the UFO format which is supported by MadGraph 5 and for WHIZARD and OMEGA."

- SARAH webpage (2.2.21)

SARAH IS A MATHEMATICA EXTENSION

- Developed by Florian Staub and first version released in 2008. Since 2019, the software is maintained by Mark Goodsell and Werner Porod.
- Version: 4.14.4, last update 17.12.20.
- Webpage: <https://sarah.hepforge.org/>
- Discussion forum: http://wernersarah.de/sarah_forum/
 - ▶ Developers are active and answer quite soon!
 - ▶ http instead of https, so do not re-use your bank/university password...
- Online GitLab reference:
<https://gitlab.in2p3.fr/goodsell/sarah/wikis/home/>
- Manuals by <Florian Staub> and <Avelino Vicente>.

HOW DO I IMPLEMENT MY MODEL?

- Symmetries and Lagrangian \Rightarrow **Model file**
- Particle content \Rightarrow **Particle file**
- Model parameters \Rightarrow **Parameter file**
- SARAH comes with more than 50 complete models already implemented.
- **Nota bene!** Most of them are supersymmetric, so more than likely your favourite model is not included in the way you wish.
- **Nota bene!** Effective operators are not supported.
- **Do not re-invent the wheel!** There is probably a model resembling your favourite model in the catalogue. It is easier to tinker with working model than to construct everything from the start.

BEFORE EVERYTHING ELSE

```
Off[General::spell] (* Switch off warnings *)  
  
Model`Name = "Hungarion";  
Model`NameLaTeX ="Model to tax \$X_{17}\$";  
Model`Authors = "Viktor Orbán";  
Model`Date = "2010-05-29";  
  
(* 2020-11-11 : model implemented, based on  
arXiv:1910.10459 *)
```

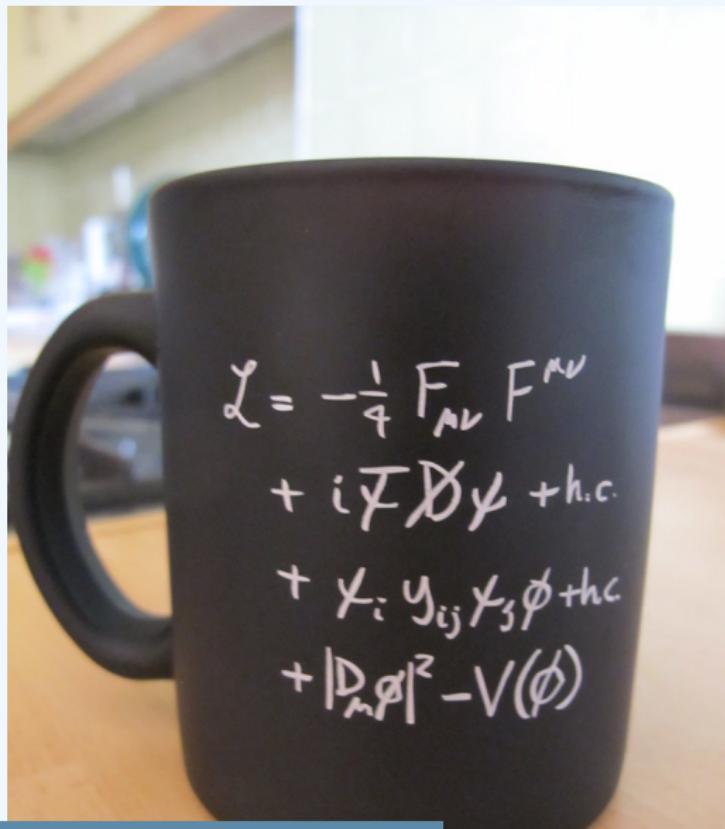
LET'S GET STARTED! WHAT SYMMETRIES YOU HAVE?

- SARAH was created for supersymmetric models, but it works just fine for non-supersymmetric models, too. I will not cover SUSY models.
- Global symmetries
 - ▶ Supported: $U(1)$ and \mathbb{Z}_n .
- Gauge symmetries
 - ▶ $U(1)$, $SU(n)$, $SO(n)$ $Sp(2n)$, E_n
- SARAH automatically checks gauge anomalies, generates the kinetic and self-interaction terms of gauge bosons:

$$\mathcal{L} = \sum_{\text{group } G} \sum_{a=1}^{\dim G} -\frac{1}{4} (F_G)_{\mu\nu}^a (F_G)^{a\mu\nu}$$

$$(F_G)_{\mu\nu}^a = \partial_\mu (V_G)_\nu^a - \partial_\nu (V_G)_\mu^a + g_G f_G^{abc} (V_G)_{\mu b} (V_G)_{\nu c}$$

AFTER SYMMETRIES, YOU WRITE THE FIELDS


Gauge coupling variable name should start with "g".

```
(* Standard model *)
Gauge[[1]]={B,    U[1],  hypercharge, g1, False};
Gauge[[2]]={WB,   SU[2],  left,        g2,  True};
Gauge[[3]]={G,    SU[3],  color,       g3, False};

FermionFields[[1]] = {q, 3, {uL, dL}, 1/6, 2, 3};
FermionFields[[2]] = {d, 3, conj[dR], 1/3, 1, -3};
...
```

1. Name
2. Number of generations
3. $SU(2)_L$ components. All fermions must be defined as LH.
4. Gauge group charges in order of appearance. Adjoint: $\mathbf{3}^* \equiv -3$.
5. Global charges (not in SM).

YOU SHOULD KNOW THE LAGRANGIAN

\Leftarrow Gauge sector

\Leftarrow Kinetic sector

\Leftarrow Yukawa sector

\Leftarrow Scalar sector

LET'S WRITE THE LAGRANGIAN IN GAUGE EIGENSTATES

```
(* Standard model *)
NameOfStates={GaugeES, EWSB};

DEFINITION[GaugeES][LagrangianInput]= {
    {LagHC, {AddHC->True}},
    {LagNoHC,{AddHC->False}}
};

LagNoHC = - mu2 conj[H].H
          - 1/2 \[Lambda] conj[H].H.conj[H].H;
LagHC = -(Yd conj[H].d.q + Ye conj[H].e.l + Yu u.q.H);
```

- Split the Lagrangian to parts with and without Hermitian conjugate. Parameters: $\mu^2, \lambda, Y_d, Y_e, Y_u$.
- SARAH expands the $SU(2)_L$ fields and takes care of generations, kinetic terms and gauge sector.

GAUGE BOSON ROTATIONS

```
(* Standard model *)
Gauge[[1]]={B,    U[1], hypercharge, g1, False};
Gauge[[2]]={WB,  SU[2], left,        g2, True};
...
DEFINITION[EWSB][GaugeSector] =
{
    {{VB,VWB[3]}, {VP,VZ}, ZZ},
    {{VWB[1],VWB[2]}, {VWp,conj[VWp]}, ZW}
};
```

Vector bosons are denoted by joining "V" and the group name.

$$\binom{\gamma}{Z} = Z^Z \binom{B}{W_3}, \quad \binom{W^+}{(W^+)^*} = Z^W \binom{W_1}{W_2}$$

SCALAR FIELD DECOMPOSITION

```
(* Standard model *)
ScalarFields[[1]] = {H, 1, {Hp, Hθ}, 1/2, 2, 1};
...
DEFINITION[EWSB][VEVs] = {{Hθ,
{v, 1/Sqrt[2]},
{Ah, \[ImaginaryI]/Sqrt[2]}},
{hh, 1/Sqrt[2]}}};
```

$$H = \begin{pmatrix} H^+ \\ H_0 \end{pmatrix}, \quad H_0 = \frac{1}{\sqrt{2}}(v + h_h + iA_h)$$

For each neutral scalar, define the VEV, CP-odd and CP-even parts with normalization, after EWSB.

FERMION MASS EIGENSTATES

We move from gauge eigenstates to mass eigenstates by diagonalizing the mass matrix and redefining the fields.

$$\overline{\psi_L} M \psi_R = \overline{\psi_L} V^T \underbrace{V^* M U^\dagger}_{M_{\text{diag}}} \underbrace{U \psi_R}_{\psi'_R} = \overline{\psi'_L} M_{\text{diag}} \psi'_R$$

(* Standard model *)

```
DEFINITION[EWSB][MatterSector]= {  
  {{{dL}}, {conj[dR]}}, {{DL,Vd}, {DR,Ud}}},  
  {{{uL}}, {conj[uR]}}, {{UL,Vu}, {UR,Uu}}},  
  {{{eL}}, {conj[eR]}}, {{EL,Ve}, {ER,Ue}}}};
```

$$\begin{array}{lll} V_u^* M_u U_u^\dagger = m_u^{\text{diag}} & V_d^* M_d U_d^\dagger = m_d^{\text{diag}} & V_e^* M_e U_e^\dagger = m_e^{\text{diag}} \\ u_L = V_u^* U_L & d_L = V_d^* D_L & e_L = V_e^* E_L \\ u_R = U_u U_R & d_R = U_d D_R & e_R = U_e E_R \end{array}$$

DIRAC SPINORS

All the fermions previously defined are two-component Weyl spinors. We need to combine them to four-component Dirac spinors for SARAH. It is customary to set prefix "F".

```
(* Standard model *)
DEFINITION[EWSB][DiracSpinors]={
  Fd ->{ DL, conj[DR]}, 
  Fe ->{ EL, conj[ER]}, 
  Fu ->{ UL, conj[UR]}, 
  Fv ->{ vL, o}}};
```

$$d = \begin{pmatrix} D_L \\ D_R \end{pmatrix}, \quad e = \begin{pmatrix} E_L \\ E_R \end{pmatrix}, \quad u = \begin{pmatrix} u_L \\ u_R \end{pmatrix}, \quad \nu = \begin{pmatrix} \nu_L \\ 0 \end{pmatrix}$$

MOST OF THE JOB IS DONE: PARAMETER FILE

Before running the model file in SARAH, we should write all the defined parameters to parameters.m with short human-readable descriptions. It is advisable to edit a complete parameter file for a similar model.

```
(* Standard model, parameter file *)
ParameterDefinitions = {
{Yu,{Description -> "Up-Yukawa-Coupling",
  DependenceNum -> Sqrt[2]/v* {{Mass[Fu,1],0,0},
  {0, Mass[Fu,2],0},
  {0,0,Mass[Fu,3]}}}},  
...
```

$$Y_u = \frac{\sqrt{2}}{v} \begin{pmatrix} M_{u1} & 0 & 0 \\ 0 & M_{u2} & 0 \\ 0 & 0 & M_{u3} \end{pmatrix}$$

FINAL THING: PARTICLE FILE

For gauge eigenstates, really \LaTeX -name is the only which should be written (for output PDF), since calculations are done in EWSB.

```
(* Standard model particle file *)
ParticleDefinitions[GaugeES] = {
{H0,{ PDG -> {0},
      Width -> 0,
      Mass -> Automatic,
      FeynArtsNr -> 1,
      LaTeX -> "H^0",
      OutputName -> "H0" }},

...
ParticleDefinitions[EWSB] = {
{hh,{Description -> "Higgs",
     PDG -> {25}}},
```

FEATURES NOT IN SM

GLOBAL SYMMETRIES

First, one writes all global symmetries and then all gauge symmetries.

```
(* 331-model *)
Global[[1]]={U[1], Lnumber};
Global[[2]]={Z[2], Parity};

Gauge[[1]]={B, U[1], xcharge, g1, False, 0, 1};
Gauge[[2]]={WB, SU[3], left, g2, True, 0, 1};
Gauge[[3]]={G, SU[3], color, g3, False, 0, 1};
FermionFields[[1]] = {q1, 1, {dpL, dL, uL},
0, 3, 3, -2/3, 1};
```

- Boolean: SARAH will expand $SU(3)_L$ triplets.
- Gauge bosons have $L = 0$ and are even under \mathbb{Z}_2 (odd = -1).
- Other fields: gauge charges and global charges in order.

SCALAR AND GOLDSSTONE MIXING

In a model with several scalar fields, SARAH needs to know how they mix. Let H_0 be the lower component of SM Higgs doublet and χ_0 a singlet scalar.

```
(* Super-weak model *)
DEFINITION[EWSB][VEVs] = {
    {H0,{vH, 1/Sqrt[2]}}, {sigmaH,I/Sqrt[2]},
    {h,1/Sqrt[2]}},
    {X0,{vX, 1/Sqrt[2]}}, {sigmaX,I/Sqrt[2]},
    {s,1/Sqrt[2]}};

DEFINITION[EWSB][MatterSector] = {
    {{h,s}, {hh, ZH}},
    {{sigmaH, sigmaX}, {Ah, ZA}},...
```

$$hh = \begin{pmatrix} hh_1 \\ hh_2 \end{pmatrix} = Z_H \begin{pmatrix} h \\ s \end{pmatrix}, \quad Ah = \begin{pmatrix} Ah_1 \\ Ah_2 \end{pmatrix} = Z_A \begin{pmatrix} \sigma_H \\ \sigma_X \end{pmatrix}$$

GAUGE KINETIC MIXING

Consider super-weak model with $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$:

(* Super-weak model *)

```
Gauge[[1]] = {B, U[1], hypercharge, gY, False};  
Gauge[[2]] = {WB, SU[2], left, g2, True};  
Gauge[[3]] = {G, SU[3], color, g3, False};  
Gauge[[4]] = {Bp, U[1], superweak, gX, False};
```

Two gauged $U(1)$'s lead to kinetic mixing \Rightarrow Zoltán Trócsányi's talk.

$$D_\mu \phi = \left(\partial_\mu + i(y_\phi, z_\phi) \begin{pmatrix} g_Y & 0 \\ 0 & g_X \end{pmatrix} \begin{pmatrix} B_\mu \\ B'_\mu \end{pmatrix} \right) \phi \equiv (\partial_\mu - i Q_\phi^T G_{\text{diag}} F_\mu) \phi$$

GAUGE KINETIC MIXING

SARAH automatically rotates away the kinetic mixing term, $\mathcal{L} = -\frac{\varepsilon}{2}F_{\mu\nu}Z^{\mu\nu}$, and produces new gauge couplings, named automatically: $(g_Y, g_X) \mapsto (g_{YY}, g_{YX}, g_{XY}, g_{XX})$.

⇒ need to write them in parameter file.

$$\begin{aligned} D_\mu \phi &= \left(\partial_\mu + i(y_\phi, z_\phi) \begin{pmatrix} g_Y & 0 \\ 0 & g_X \end{pmatrix} \begin{pmatrix} B_\mu \\ B'_\mu \end{pmatrix} \right) \phi \equiv (\partial_\mu - iQ_\phi^T \mathbf{G}_{\text{diag}} \mathbf{F}_\mu) \phi \\ &\mapsto \left(\partial_\mu + i(y_\phi, z_\phi) \begin{pmatrix} g_{YY} & g_{YX} \\ g_{XY} & g_{XX} \end{pmatrix} \begin{pmatrix} A_\mu \\ A'_\mu \end{pmatrix} \right) \phi \equiv (\partial_\mu - iQ_\phi^T \mathbf{G} \mathbf{F}'_\mu) \phi \end{aligned}$$

Beta functions are calculated to four $U(1)_X \otimes U(1)_Y$ gauge couplings.

BSM PARAMETER FILE

If we wish to write down the transformed couplings with respect to the original parameters, we must add a dependence.

$$\mathcal{L}_{k\text{-mix}} = -\frac{1}{2} \sin \theta_\varepsilon B_{\mu\nu} Z^{\mu\nu}$$

$$\Rightarrow g_{YY} = g_Y, \quad g_{YX} = g_Y \tan \theta_\varepsilon, \quad g_{XY} = 0, \quad g_{XX} = g_X \sec \theta_\varepsilon$$

```
(* Super-weak model, parameter file *)
{gXX, {Description -> "U(1) X-X gauge coupling",
       Real -> True,
       OutputName -> gXX,
       LaTeX -> "g_{XX}",
       Dependence -> gX Sec[ThetaE]}},  
...
```

BSM PARTICLE FILE

All the new particles should be written in particle file with short description and \LaTeX -name. Nothing else is really needed, since we are not going to generate input to other analysis tools in this demo.

```
(* Super-weak particle file *)
ParticleDefinitions[GaugeES] = {
  {X0,{Description -> "Neutral Extra Higgs",
    PDG -> {0},
    Width -> {0},
    Mass -> Automatic,
    FeynArtsNr -> 12,
    LaTeX -> "\\chi_0",
    OutputName -> X0}}}
```

...

LET'S DEMONSTATE SARAH WITH SM
AND U(1)-EXTENDED SM.