

NEUTRINO MASS MODELS

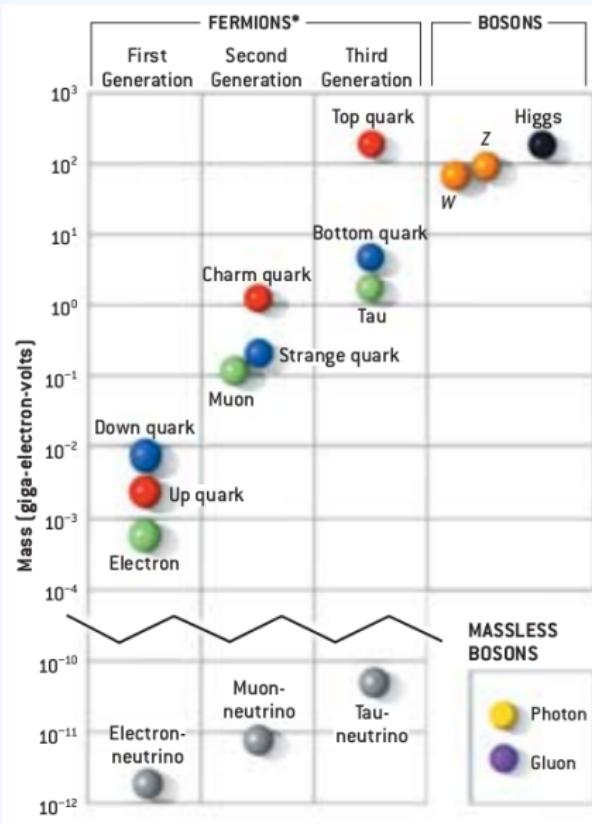
ELFT WINTER SCHOOL

TIMO J. KÄRKKÄINEN

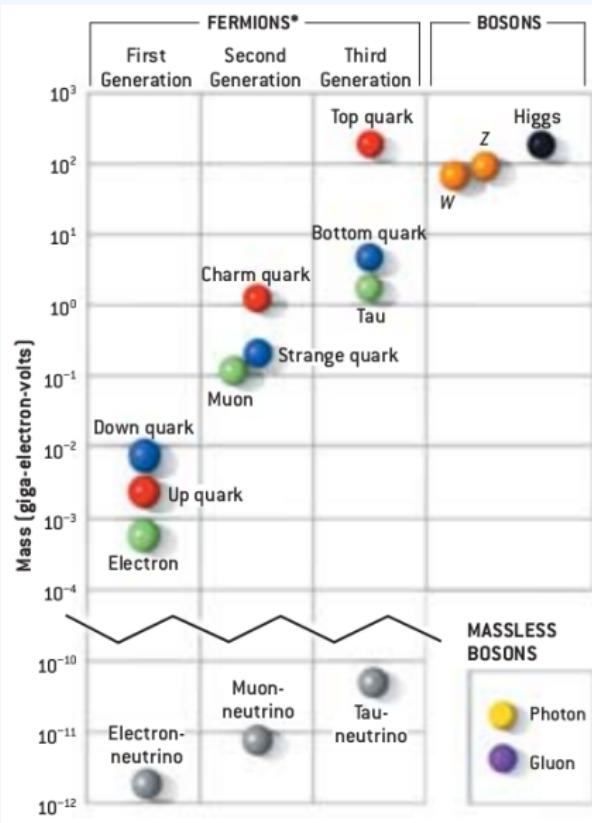
EÖTVÖS LORÁND UNIVERSITY

3.2.21

TYPE II SEESAW MECHANISM

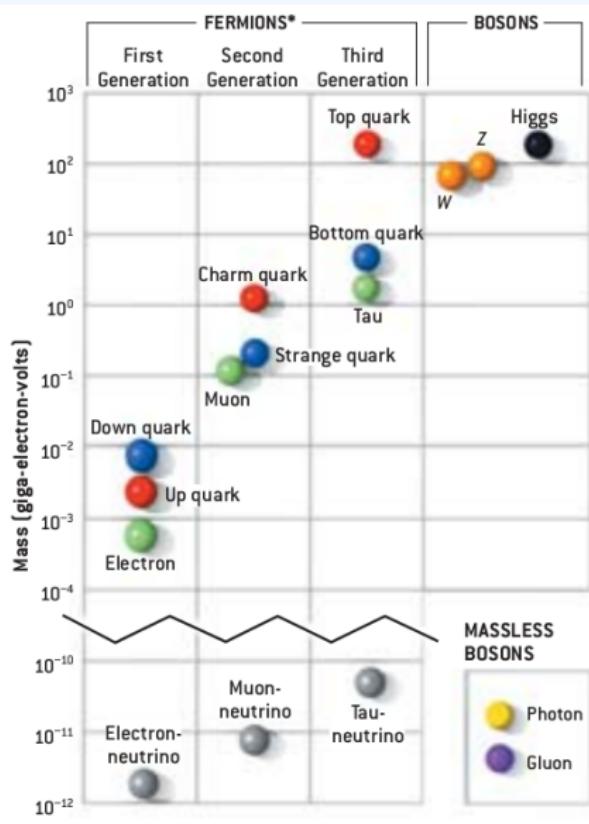


TYPE II SEESAW MECHANISM



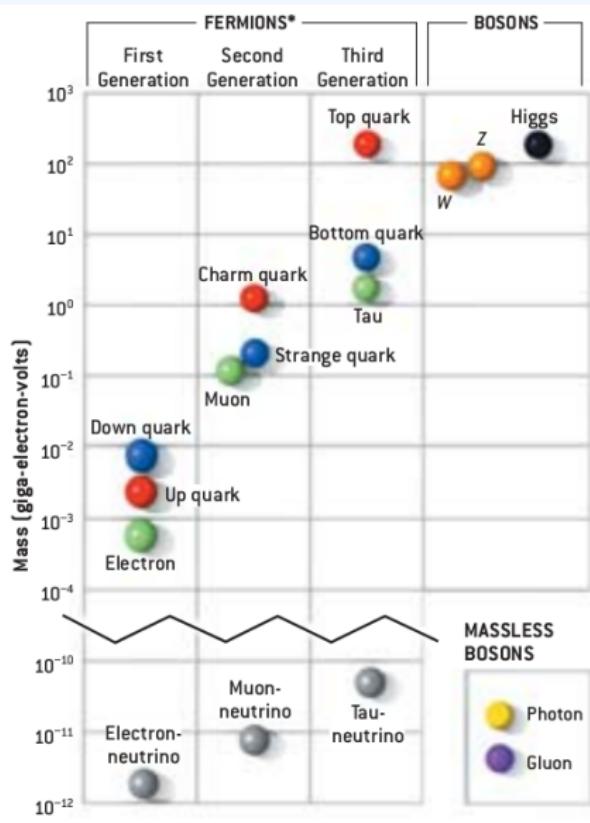
■ Why neutrinos are so light?
Maybe a different Higgs
boson generates masses to
neutrinos?

TYPE II SEESAW MECHANISM



- Why neutrinos are so light?
Maybe a different Higgs boson generates masses to neutrinos?
- Instead of sterile neutrinos, we may postulate the existence of a triplet scalar $\Delta = (\Delta_1, \Delta_2, \Delta_3)$.

TYPE II SEESAW MECHANISM



- Why neutrinos are so light?
Maybe a different Higgs boson generates masses to neutrinos?
- Instead of sterile neutrinos, we may postulate the existence of a triplet scalar $\Delta = (\Delta_1, \Delta_2, \Delta_3)$.
- Neutrino mass is generated at tree-level.

TYPE II SEESAW SCALAR LAGRANGIAN

[Magg, Wetterich, 1980; Schecter, Valle 1980; Cheng, Li, 1980; Mohapatra, Senjanović; 1980]

$$\mathcal{L}_{\text{scalar}} = (D_\mu H)^\dagger (D^\mu H) + \text{Tr} \left[(D_\mu \Delta)^\dagger (D^\mu \Delta) \right] + Y^\nu L_L^T C i\sigma_2 \Delta L_L - V(H, \Delta)$$

$$V(H, \Delta) = -m_H^2 H^\dagger H + \frac{\lambda}{4} (H^\dagger H)^2 + M_\Delta^2 \text{Tr}(\Delta^\dagger \Delta) + \left(\lambda_\phi H^T i\sigma_2 \Delta^\dagger H + \text{h.c.} \right)$$

$$D_\mu \Delta = \partial_\mu \Delta + ig_2 [\tau \cdot \mathbf{W}_\mu, \Delta] + ig_1 Y_\Delta B_\mu \Delta / 2$$

$$\Delta = \frac{1}{\sqrt{2}} \sigma_i \Delta_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta_3 & \Delta_1 - i\Delta_2 \\ \Delta_1 + i\Delta_2 & -\Delta_3 \end{pmatrix} \equiv \begin{pmatrix} \Delta_{11} & \Delta_{12} \\ \Delta_{21} & \Delta_{22} \end{pmatrix}$$

Δ is represented here in a bidoublet form, so that the Lagrangian can be written in a compact way.

ELECTRIC CHARGE AND VEV OF TRIPLET SCALAR

- Using Gell-Mann–Nishijima formula, we determine the **electric charges** of the new scalars.

$$Q\Delta = [\tau^3, \Delta] + \frac{Y}{2}\Delta = \begin{pmatrix} +\Delta_{11} & +2\Delta_{12} \\ 0 \cdot \Delta_{21} & +\Delta_{22} \end{pmatrix}$$
$$\Rightarrow \Delta = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix} \xrightarrow{\text{VEV}} \begin{pmatrix} 0 & 0 \\ v' & 0 \end{pmatrix},$$

where v' is the vacuum expectation value (VEV) of Δ^0 .

ELECTRIC CHARGE AND VEV OF TRIPLET SCALAR

- Using Gell-Mann–Nishijima formula, we determine the **electric charges** of the new scalars.

$$Q\Delta = [\tau^3, \Delta] + \frac{Y}{2}\Delta = \begin{pmatrix} +\Delta_{11} & +2\Delta_{12} \\ \mathbf{0} \cdot \Delta_{21} & +\Delta_{22} \end{pmatrix}$$
$$\Rightarrow \Delta = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix} \xrightarrow{\text{VEV}} \begin{pmatrix} 0 & 0 \\ v' & 0 \end{pmatrix},$$

where v' is the vacuum expectation value (VEV) of Δ^0 .

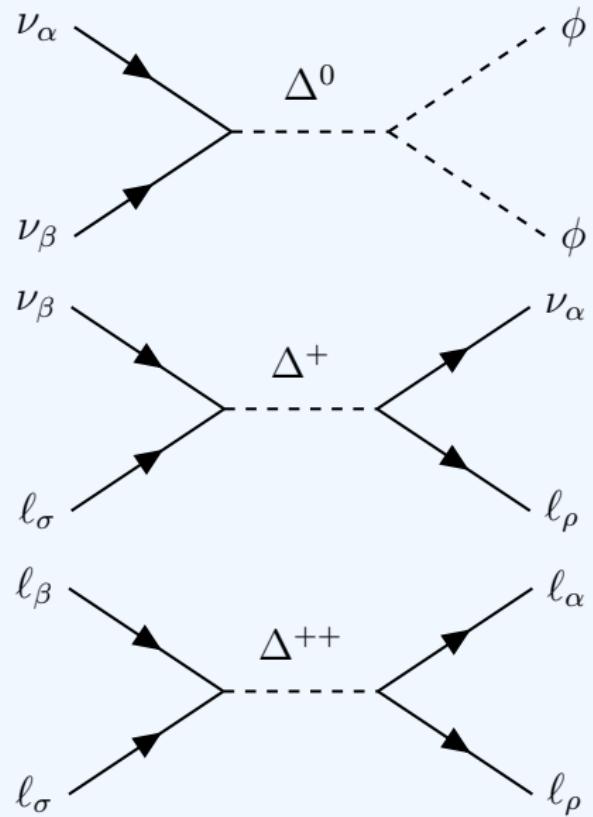
- The expression for v' can be derived by minimizing the effective Higgs potential:

$$\frac{\partial V(v, \Delta)}{\partial \Delta^{0*}} = 0 \Rightarrow v' = \lambda_\phi \frac{v^2}{M_\Delta^2}$$

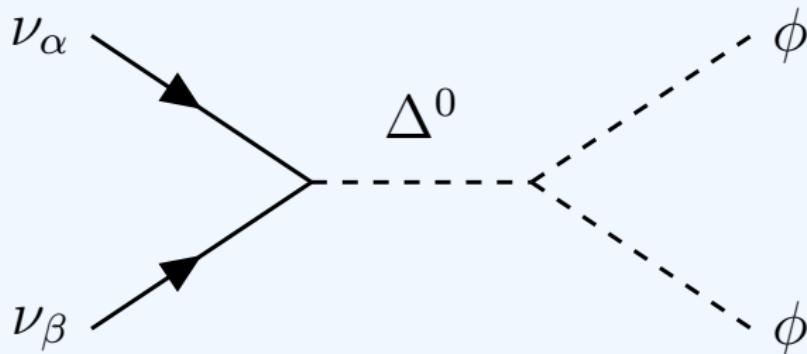
YUKAWA SECTOR IN TYPE II SEESAW

$$\begin{aligned}
 \mathcal{L} &= Y_{\alpha\beta} L_{\alpha L}^T C i\sigma_2 \Delta L_{\beta L} + \text{h.c.} \\
 &= Y_{\alpha\beta} \underbrace{\left[\Delta^0 \overline{(\nu_{\alpha L})^C} \nu_{\beta L} \right]}_{\text{Majorana mass terms}} \\
 &\quad - \underbrace{\frac{1}{\sqrt{2}} \Delta^+ \left(\overline{\ell_{\alpha R}^C} \nu_{\beta L} + \overline{\nu_{\alpha R}^C} \ell_{\beta L} \right)}_{\text{nonstandard interactions}} \\
 &\quad - \underbrace{\Delta^{++} \overline{\ell_{\alpha R}^C} \ell_{\beta L}}_{\text{CLFV decays}} + \text{h.c.},
 \end{aligned}$$

We obtain observable flavour physics!



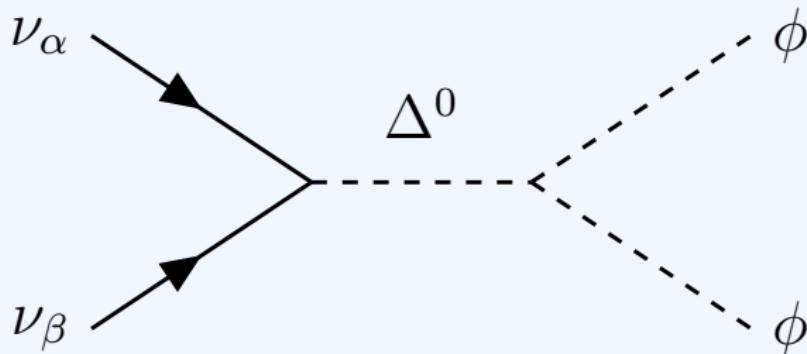
NEUTRINO MASSES IN TYPE II SEESAW



- Use effective field theory to integrate out Δ^0 , which must be heavy: $M_\Delta \gtrsim 750$ GeV [CMS collaboration, 2017]

$$\mathcal{L} = \frac{Y_{\alpha\beta} \lambda_\phi v^2}{M_\Delta^2} \left(\overline{(\nu_{L\alpha})^c} \nu_{\beta L} \right) \Rightarrow m_\nu = -\frac{Y \lambda_\phi v^2}{M_\Delta^2}$$

NEUTRINO MASSES IN TYPE II SEESAW



- Use effective field theory to integrate out Δ^0 , which must be heavy: $M_\Delta \gtrsim 750$ GeV [CMS collaboration, 2017]

$$\mathcal{L} = \frac{Y_{\alpha\beta} \lambda_\phi v^2}{M_\Delta^2} \left(\overline{(\nu_{L\alpha})^c} \nu_{\beta L} \right) \Rightarrow m_\nu = -\frac{Y \lambda_\phi v^2}{M_\Delta^2}$$

- The negative sign can be removed via neutrino phase redefinition.

NEUTRINO MASSES IN TYPE II SEESAW

- Type II seesaw does not give a pattern for Y : it is arbitrary.

NEUTRINO MASSES IN TYPE II SEESAW

- Type II seesaw does not give a pattern for Y : it is arbitrary.
- Three ways to explain lightness of neutrinos:
 - ▶ Tiny Yukawa — lose naturalness

$$m_\nu = \gamma \frac{\lambda_\phi v^2}{M_\Delta^2}$$

NEUTRINO MASSES IN TYPE II SEESAW

- Type II seesaw does not give a pattern for Y : it is arbitrary.
- Three ways to explain lightness of neutrinos:
 - ▶ Tiny Yukawa — lose naturalness

$$m_\nu = \gamma \frac{\lambda_\phi v^2}{M_\Delta^2}$$

- ▶ Very heavy scalar — can not be probed and large δM_H^2

$$m_\nu = \frac{Y \lambda_\phi v^2}{M_\Delta^2}$$

NEUTRINO MASSES IN TYPE II SEESAW

- Type II seesaw does not give a pattern for Y : it is arbitrary.
- Three ways to explain lightness of neutrinos:
 - ▶ Tiny Yukawa — lose naturalness

$$m_\nu = \gamma \frac{\lambda_\phi v^2}{M_\Delta^2}$$

- ▶ Very heavy scalar — can not be probed and large δM_H^2

$$m_\nu = \frac{Y \lambda_\phi v^2}{M_\Delta^2}$$

- ▶ Tiny trilinear coupling — can be motivated

$$m_\nu = \lambda_\phi \frac{Y v^2}{M_\Delta^2}$$

NATURALNESS CRITERION

- A parameter α of a theory can be naturally small, if at the limit $\alpha \rightarrow 0$ the symmetry of the theory is enhanced.
[t Hooft, 1980]

NATURALNESS CRITERION

- A parameter α of a theory can be naturally small, if at the limit $\alpha \rightarrow 0$ the symmetry of the theory is enhanced.
[t Hooft, 1980]
- How we can enhance the symmetry? Consider how the lepton number L is broken in Type II seesaw.

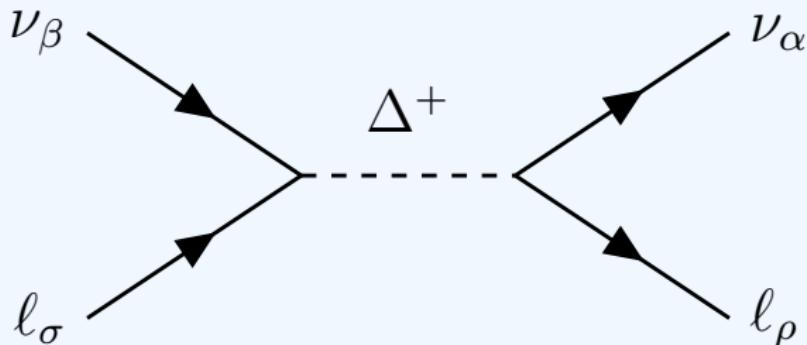
NATURALNESS CRITERION

- A parameter α of a theory can be naturally small, if at the limit $\alpha \rightarrow 0$ the symmetry of the theory is enhanced.
[t Hooft, 1980]
- How we can enhance the symmetry? Consider how the lepton number L is broken in Type II seesaw.
- Consider the following terms from the full Lagrangian:

$$\mathcal{L} = -Y_{\alpha\beta}\Delta^0 \overline{(\nu_{\alpha L})^C} \nu_{\beta L} - \lambda_\phi H^T i\sigma_2 \Delta^\dagger H + \text{h.c.}$$

The first term breaks L , but can be made L -conserving by assigning $L = -2$ to the triplet Δ . Then the second term breaks L , λ_ϕ can be naturally small, and therefore m_ν is naturally small.

NONSTANDARD INTERACTIONS IN TYPE II SEESAW



- Use effective field theory to integrate out Δ^+ , producing a dimension-6 operator

$$\mathcal{L}_{\text{NSI}} = \frac{Y_{\sigma\beta} Y_{\alpha\rho}^\dagger}{M_\Delta^2} \left(\overline{\nu_{\alpha L}} \gamma_\mu \nu_{\beta L} \right) \left(\overline{\ell_{\rho L}} \gamma^\mu \ell_{\sigma L} \right)$$

NONSTANDARD INTERACTIONS (NSI)

[Wolfenstein, 1978; Grossmann, 1995]

- The most general possible $V \pm A$ -type NSI operators are

$$\mathcal{L}_{\text{NSI}}^{\text{CC}} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{ff',C} (\bar{\nu}_{L\alpha} \gamma^\mu \nu_{L\beta}) (\bar{f} \gamma_\mu P c f')$$

$$\mathcal{L}_{\text{NSI}}^{\text{NC}} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{f,C} (\bar{\nu}_{L\alpha} \gamma^\mu \nu_{L\beta}) (\bar{f} \gamma_\mu P c f),$$

where sum over chiralities ($C = L, R$), fermions (f, f') and flavours ($\alpha, \beta = e, \mu, \tau$) is implied.

NONSTANDARD INTERACTIONS (NSI)

[Wolfenstein, 1978; Grossmann, 1995]

- The most general possible $V \pm A$ -type NSI operators are

$$\mathcal{L}_{\text{NSI}}^{\text{CC}} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{ff',C} (\bar{\nu}_{L\alpha} \gamma^\mu \nu_{L\beta}) (\bar{f} \gamma_\mu P c f')$$

$$\mathcal{L}_{\text{NSI}}^{\text{NC}} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{f,C} (\bar{\nu}_{L\alpha} \gamma^\mu \nu_{L\beta}) (\bar{f} \gamma_\mu P c f),$$

where sum over chiralities ($C = L, R$), fermions (f, f') and flavours ($\alpha, \beta = e, \mu, \tau$) is implied.

- In general the complex parameters ε induce exotic decays and distort neutrino oscillation transition probabilities. For Type II seesaw, we have left-chiral couplings

$$\varepsilon_{\alpha\beta}^{\rho\sigma} = -\frac{M_\Delta^2}{2\sqrt{2}G_F v^4 \lambda_\phi^2} (m_\nu)_{\sigma\beta} (m_\nu^\dagger)_{\alpha\rho}$$

[Malinský, Ohlsson, Zhang, 2008]

- Neutrino flavour oscillations may be described with Schrödinger equation with Hamiltonian operator

$$\begin{aligned}
 H = & \frac{1}{2E} U \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} U^\dagger + \begin{pmatrix} V_{CC} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
 & + \underbrace{\sum_{f=e,u,d} V_f \begin{pmatrix} \varepsilon_{ee}^f & \varepsilon_{e\mu}^f & \varepsilon_{e\tau}^f \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^f & \varepsilon_{\mu\tau}^f \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^f \end{pmatrix}}_{\text{nonstandard interactions}}, \quad \varepsilon^f = \varepsilon^{f,L} + \varepsilon^{f,R}
 \end{aligned}$$

where U is neutrino mixing matrix, $V_{CC} = \sqrt{2}G_F N_e(x)$ is the charged current background potential, and $N_e(x)$ electron density.

CORRECTION TO NEUTRINO OSCILLATIONS

- The total NSI contribution to neutrino matter potential is given by, assuming neutrality of matter,

$$\varepsilon_{ll'}^m \equiv \sum_f \varepsilon_{ll'}^f \frac{N_f}{N_e} = \varepsilon_{ll'}^e + 2\varepsilon_{ll'}^u + \varepsilon_{ll'}^d + \frac{N_n}{N_e} (\varepsilon_{ll'}^u + 2\varepsilon_{ll'}^d)$$

CORRECTION TO NEUTRINO OSCILLATIONS

- The total NSI contribution to neutrino matter potential is given by, assuming neutrality of matter,

$$\varepsilon_{ll'}^m \equiv \sum_f \varepsilon_{ll'}^f \frac{N_f}{N_e} = \varepsilon_{ll'}^e + 2\varepsilon_{ll'}^u + \varepsilon_{ll'}^d + \frac{N_n}{N_e} (\varepsilon_{ll'}^u + 2\varepsilon_{ll'}^d)$$

- From experiments, $|\varepsilon_{ll'}^m| \leq \mathcal{O}(0.1)$. For Type II seesaw, this gives a constraint

$$|\varepsilon_{ll'}^m| = |\varepsilon_{ll'}^e| = \left| -\frac{M_\Delta^2}{2\sqrt{2} G_F V^4 \lambda_\phi^2} (m_\nu)_{el'} (m_\nu^\dagger)_{le} \right| \leq \mathcal{O}(0.1)$$

$$\Rightarrow |\lambda_\phi| > 0.03 \text{ eV}, \quad \text{lower bound}$$

[Huitu, Kärkkäinen, Maalampi, Vihonen, 2018]

CLFV DECAYS IN TYPE II SEESAW

Consider for example an NSI operator

$$\mathcal{L}' = -2\sqrt{2}G_F \varepsilon_{ee}^{e\mu} (\bar{\nu}_e \gamma^\nu P_L \nu_e) (\bar{e} \gamma_\nu \mu).$$

CLFV DECAYS IN TYPE II SEESAW

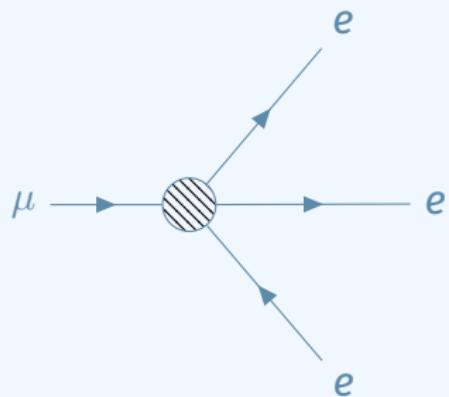
Consider for example an NSI operator

$$\mathcal{L}' = -2\sqrt{2}G_F \varepsilon_{ee}^{e\mu} (\bar{\nu}_e \gamma^\nu P_L \nu_e) (\bar{e} \gamma_\nu \mu).$$

To retain gauge invariance, this operator must be part of a more general operator, namely

$$\mathcal{L} = -2\sqrt{2}G_F \varepsilon_{ee}^{e\mu} (\bar{L}_e \gamma^\nu P_L L_e) (\bar{L}_e \gamma_\nu L_\mu),$$

which indeed is present in Type II seesaw. The four-charged-lepton-operator then induces CLFV decays.



$$\mu^- \rightarrow 2e^- + e^+$$

CLFV DECAYS CONSTRAIN SEVERELY NSI

- For this decay, we have model-independently

$$\Gamma(\mu \rightarrow 3e) = \frac{m_\mu^5 G_F^2}{24\pi^3} |\varepsilon_{ee}^{e\mu}|^2$$

$$\text{BR}(\mu \rightarrow 3e)_{\text{exp}} \lesssim 10^{-12}$$

$$\text{BR}(\mu \rightarrow 3e)_{\nu\text{SM}} = \mathcal{O}(10^{-50})$$

CLFV DECAYS CONSTRAIN SEVERELY NSI

- For this decay, we have model-independently

$$\Gamma(\mu \rightarrow 3e) = \frac{m_\mu^5 G_F^2}{24\pi^3} |\varepsilon_{ee}^{e\mu}|^2$$

$$\text{BR}(\mu \rightarrow 3e)_{\text{exp}} \lesssim 10^{-12}$$

$$\text{BR}(\mu \rightarrow 3e)_{\nu\text{SM}} = \mathcal{O}(10^{-50})$$

- CLFV decays are actually possible in ν SM, but their decay rates are highly suppressed due to factor $\frac{m_\nu^4}{m_W^4} \sim 10^{-48}!$

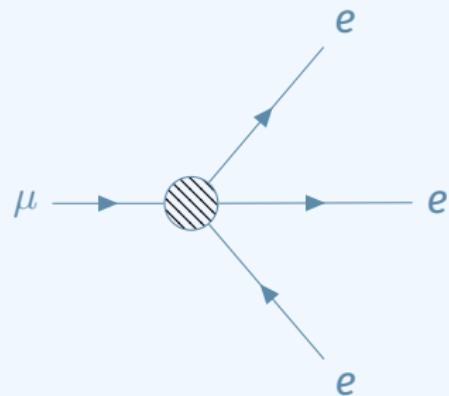
CLFV DECAYS CONSTRAIN SEVERELY NSI

- For this decay, we have model-independently

$$\Gamma(\mu \rightarrow 3e) = \frac{m_\mu^5 G_F^2}{24\pi^3} |\varepsilon_{ee}^{e\mu}|^2$$

$$\text{BR}(\mu \rightarrow 3e)_{\text{exp}} \lesssim 10^{-12}$$

$$\text{BR}(\mu \rightarrow 3e)_{\nu\text{SM}} = \mathcal{O}(10^{-50})$$



- CLFV decays are actually possible in ν SM, but their decay rates are highly suppressed due to factor $\frac{m_\nu^4}{m_W^4} \sim 10^{-48}$!

- $|\varepsilon_{ee}^{e\mu}| < 3.5 \times 10^{-7}$ [PDG 2020] is the most stringent constraint. Other CLFV NSI parameters have a few orders of magnitude more relaxed bounds.

$$\mu^- \rightarrow 2e^- + e^+$$

COMPARISON BETWEEN SEESAWS (PIC: SYMMETRY MAGAZINE)

Seesaw Type	Type I	Type II
Vacuum stability	No	Yes
Dark matter candidate	Yes	No
Enhanced Neutrino matter potential	No	Yes
Enhanced CLFV decays	No	Yes
PMNS unitarity	No	Yes

RADIATIVE NEUTRINO MASS GENERATION MECHANISM

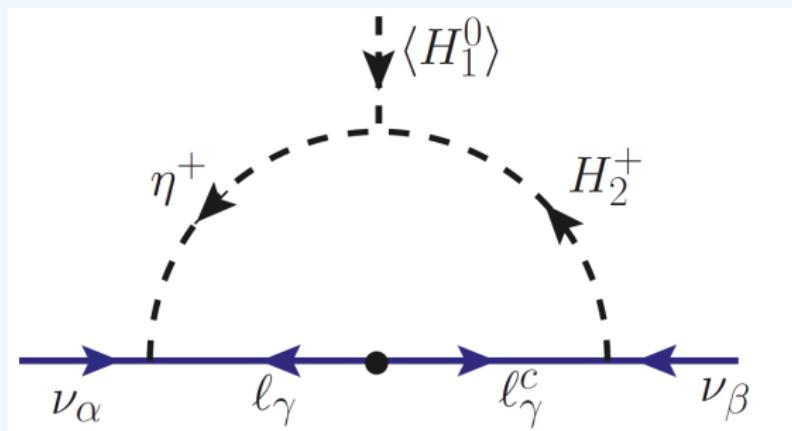
- Neutrino masses can be added to the SM on
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),

RADIATIVE NEUTRINO MASS GENERATION MECHANISM

- Neutrino masses can be added to the SM on
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),
 - ▶ tree level (seesaw mechanism - suppression by heavy new particles or 't Hooft naturalness argument), or

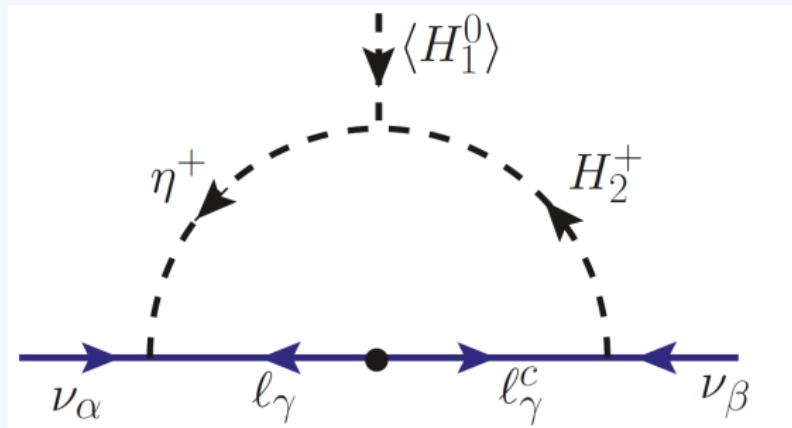
RADIATIVE NEUTRINO MASS GENERATION MECHANISM

- Neutrino masses can be added to the SM on
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),
 - ▶ tree level (seesaw mechanism - suppression by heavy new particles or 't Hooft naturalness argument), or
 - ▶ **loop level** (radiative models - suppression by loop and helicity)



RADIATIVE NEUTRINO MASS GENERATION MECHANISM

- Neutrino masses can be added to the SM on
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),
 - ▶ tree level (seesaw mechanism - suppression by heavy new particles or 't Hooft naturalness argument), or
 - ▶ **loop level** (radiative models - suppression by loop and helicity)



- In the SM, neutrinos are massless at all orders of perturbation theory.

ZEE MODEL [ZEE, 1980]

$$P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{Zee}} = \frac{1}{2}, \quad P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{exp.}} \approx \frac{1}{3}$$

- Even though Zee model is ruled out [Frampton, Oh, Yoshikawa, 2001] by neutrino oscillation experiments, it is useful to look into the features of it, since
 - ▶ it is one of the simplest radiative neutrino mass generation mechanisms, and

ZEE MODEL [ZEE, 1980]

$$P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{Zee}} = \frac{1}{2}, \quad P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{exp.}} \approx \frac{1}{3}$$

- Even though Zee model is ruled out [Frampton, Oh, Yoshikawa, 2001] by neutrino oscillation experiments, it is useful to look into the features of it, since
 - ▶ it is one of the simplest radiative neutrino mass generation mechanisms, and
 - ▶ features of Zee model are present in other models.

ZEE MODEL [ZEE, 1980]

$$P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{Zee}} = \frac{1}{2}, \quad P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{exp.}} \approx \frac{1}{3}$$

- Even though Zee model is ruled out [Frampton, Oh, Yoshikawa, 2001] by neutrino oscillation experiments, it is useful to look into the features of it, since
 - ▶ it is one of the simplest radiative neutrino mass generation mechanisms, and
 - ▶ features of Zee model are present in other models.
- SM is extended only on scalar sector, which in Zee model consists of
 - ▶ two Higgs doublets $\phi_1, \phi_2 \sim (\mathbf{2}, \frac{1}{2})$ and

ZEE MODEL [ZEE, 1980]

$$P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{Zee}} = \frac{1}{2}, \quad P_{\odot}(\nu_e \rightarrow \nu_e)_{\text{exp.}} \approx \frac{1}{3}$$

- Even though Zee model is ruled out [Frampton, Oh, Yoshikawa, 2001] by neutrino oscillation experiments, it is useful to look into the features of it, since
 - ▶ it is one of the simplest radiative neutrino mass generation mechanisms, and
 - ▶ features of Zee model are present in other models.
- SM is extended only on scalar sector, which in Zee model consists of
 - ▶ two Higgs doublets $\phi_1, \phi_2 \sim (\mathbf{2}, \frac{1}{2})$ and
 - ▶ one charged scalar singlet $\eta^+ \sim (\mathbf{1}, 1)$.

SCALAR SECTOR OF ZEE MODEL

- Vacuum expectation values are

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \langle \eta^+ \rangle = 0.$$

SCALAR SECTOR OF ZEE MODEL

- Vacuum expectation values are

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \langle \eta^+ \rangle = 0.$$

- We may however rotate the doublet of doublets to a new basis, where only one of the doublet develops a VEV:

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad v = \sqrt{v_1^2 + v_2^2}$$

SCALAR SECTOR OF ZEE MODEL

- Vacuum expectation values are

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \langle \eta^+ \rangle = 0.$$

- We may however rotate the doublet of doublets to a new basis, where only one of the doublet develops a VEV:

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad v = \sqrt{v_1^2 + v_2^2}$$

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v + H_1^0 + iG^0) \end{pmatrix}, \quad H_2 = \begin{pmatrix} H_2^+ \\ \frac{1}{\sqrt{2}}(H_2^0 + iA) \end{pmatrix}$$

⇒ We gloss over many technicalities and intermediate steps to get to the point. More details in **[Babu *et al.*, 2020]**.

HIGGS POTENTIAL CONTAINS A CUBIC TERM

$$V(H_1, H_2, \eta) = (\text{quadratic terms}) + (\text{quartic terms}) \\ + (\mu \varepsilon_{ij} H_1^i H_2^j \eta^- + \text{h.c.})$$

HIGGS POTENTIAL CONTAINS A CUBIC TERM

$$V(H_1, H_2, \eta) = (\text{quadratic terms}) + (\text{quartic terms}) \\ + (\mu \varepsilon_{ij} H_1^i H_2^j \eta^- + \text{h.c.})$$

- Scalar content in the rotated basis:
 - ▶ Two Goldstone bosons (G^+, G^0).
 - ▶ Two neutral CP-even fields (H_1^0, H_2^0).
 - ▶ One neutral CP-odd field A .
 - ▶ Two charged scalar fields (H_2^+, η^+).

HIGGS POTENTIAL CONTAINS A CUBIC TERM

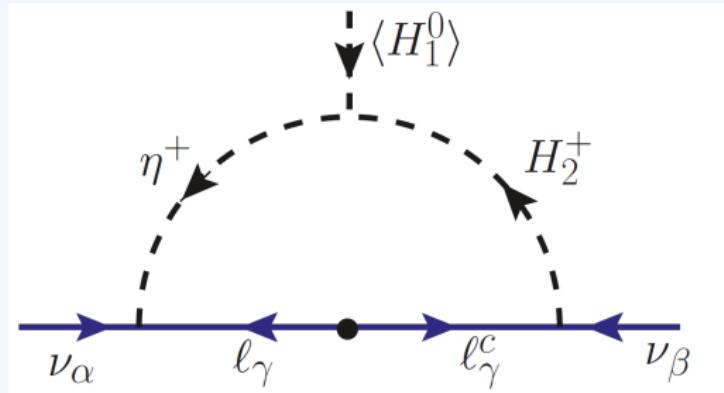
$$V(H_1, H_2, \eta) = (\text{quadratic terms}) + (\text{quartic terms}) \\ + (\mu \varepsilon_{ij} H_1^i H_2^j \eta^- + \text{h.c.})$$

- Scalar content in the rotated basis:
 - ▶ Two Goldstone bosons (G^+, G^0).
 - ▶ Two neutral CP-even fields (H_1^0, H_2^0).
 - ▶ One neutral CP-odd field A .
 - ▶ Two charged scalar fields (H_2^+, η^+).
- The scalar fields mix, and the **mixing angle between charged scalars** is given by

$$\sin 2\phi = \frac{-\sqrt{2}v\mu}{M_{H^+}^2 - M_{h^+}^2},$$

where H^+ and h^+ are the physical charged scalars, with $M_{H^+} > M_{h^+}$.

INGREDIENTS FOR NEUTRINO MASS MATRIX ZEE



Here i, j are $SU(2)_L$ indices, α, β and flavour indices and $\phi' = i\sigma_2\phi^*$. The H_2 doublet is **leptophilic** and f is an **antisymmetric** matrix (Fermi statistics).

$$\mathcal{L}_{\text{Lepton Yukawa}} = -f_{\alpha\beta} L_\alpha^i L_\beta^j \varepsilon_{ij} \eta^+ - \tilde{Y}_{\alpha\beta} H'_{1i} L_{\alpha j} \ell_\beta^c \varepsilon_{ij} - Y_{\alpha\beta} H'_{2i} L_{\alpha j} \ell_\beta^c \varepsilon_{ij} + \text{h.c.}$$

$$V(H_1, H_2, \eta) = \mu \varepsilon_{ij} H_1^i H_2^j \eta^- + \text{h.c.} + \dots$$

AFTER THE DUST SETTLES...

- Charged lepton masses are given by **diagonal** mass matrix,

$$M_\ell = \frac{\tilde{Y}v}{\sqrt{2}}, \text{ just like in SM.}$$

AFTER THE DUST SETTLES...

- Charged lepton masses are given by **diagonal** mass matrix,

$$M_\ell = \frac{\tilde{Y}v}{\sqrt{2}}, \text{ just like in SM.}$$

- Neutrino mass matrix is **symmetric**.

$$M_\nu = (f M_\ell Y + Y^T M_\ell f^T) \underbrace{\frac{\sin 2\phi}{16\pi^2} \ln \frac{M_{h^+}^2}{M_{H^+}^2}}_{\text{one-loop factor}}$$

AFTER THE DUST SETTLES...

- Charged lepton masses are given by **diagonal** mass matrix,

$$M_\ell = \frac{\tilde{Y}v}{\sqrt{2}}, \text{ just like in SM.}$$

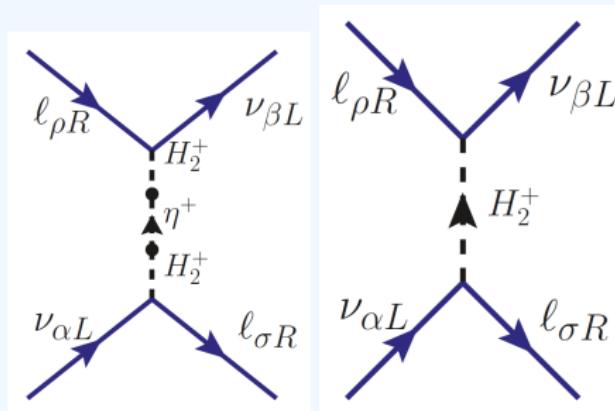
- Neutrino mass matrix is **symmetric**.

$$M_\nu = (f M_\ell Y + Y^T M_\ell f^T) \underbrace{\frac{\sin 2\phi}{16\pi^2} \ln \frac{M_{h^+}^2}{M_{H^+}^2}}_{\text{one-loop factor}}$$

- Many free parameters:

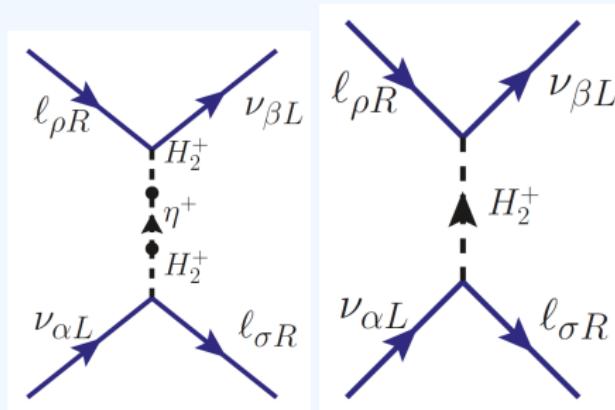
$$f = \begin{pmatrix} 0 & f_{e\mu} & f_{e\tau} \\ -f_{e\mu} & 0 & f_{\mu\tau} \\ -f_{e\tau} & -f_{\mu\tau} & 0 \end{pmatrix}, Y = \begin{pmatrix} Y_{ee} & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}, \mu, M_{h^+}, M_{H^+}$$

NONSTANDARD INTERACTIONS IN ZEE MODEL



$$\mathcal{L}_{\text{NSI?}}^{(h^+)} = \sin^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{M_{h^+}^2} (\bar{\nu}_{\alpha L} \ell_{\rho R})(\bar{\ell}_{\sigma R} \nu_{\beta L})$$

NONSTANDARD INTERACTIONS IN ZEE MODEL



$$\mathcal{L}_{\text{NSI?}}^{(h^+)} = \sin^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{M_{h^+}^2} (\bar{\nu}_{\alpha L} \ell_{\rho R})(\bar{\ell}_{\sigma R} \nu_{\beta L})$$

Problem! This operator has scalar and pseudoscalar currents, but NSI has $(V - A)(V \pm A)$ current structure.

FIERZ TRANSFORM

Five types of four-fermion operators: Scalar, Vector, Tensor, Axial vector and Pseudoscalar.

$$\mathcal{L}^S(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \psi_2)(\bar{\psi}_3 \psi_4)$$

$$\mathcal{L}^V(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \gamma^\mu \psi_2)(\bar{\psi}_3 \gamma_\mu \psi_4)$$

$$\mathcal{L}^T(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \sigma^{\mu\nu} \psi_2)(\bar{\psi}_3 \sigma_{\mu\nu} \psi_4)$$

$$\mathcal{L}^A(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \gamma^\mu \gamma^5 \psi_2)(\bar{\psi}_3 \gamma_\mu \gamma^5 \psi_4)$$

$$\mathcal{L}^P(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \gamma^5 \psi_2)(\bar{\psi}_3 \gamma^5 \psi_4)$$

$$C = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & -\frac{1}{8} & \frac{1}{4} & -\frac{1}{4} \\ -1 & \frac{1}{2} & 0 & \frac{1}{2} & 1 \\ -3 & 0 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} & -1 \\ -\frac{1}{4} & \frac{1}{4} & -\frac{1}{8} & -\frac{1}{4} & -\frac{1}{4} \end{pmatrix}$$

$$\mathcal{L}^X(\psi_1, \psi_2, \psi_3, \psi_4) = \sum_{Y=SVTAP} C_{XY} \mathcal{L}^Y(\psi_1, \psi_4, \psi_3, \psi_2)$$

FIERZ TRANSFORM

Five types of four-fermion operators: Scalar, Vector, Tensor, Axial vector and Pseudoscalar.

$$\mathcal{L}^S(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \psi_2)(\bar{\psi}_3 \psi_4)$$

$$\mathcal{L}^V(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \gamma^\mu \psi_2)(\bar{\psi}_3 \gamma_\mu \psi_4)$$

$$\mathcal{L}^T(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \sigma^{\mu\nu} \psi_2)(\bar{\psi}_3 \sigma_{\mu\nu} \psi_4)$$

$$\mathcal{L}^A(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \gamma^\mu \gamma^5 \psi_2)(\bar{\psi}_3 \gamma_\mu \gamma^5 \psi_4)$$

$$\mathcal{L}^P(\psi_1, \psi_2, \psi_3, \psi_4) = (\bar{\psi}_1 \gamma^5 \psi_2)(\bar{\psi}_3 \gamma^5 \psi_4)$$

$$C = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & -\frac{1}{8} & \frac{1}{4} & -\frac{1}{4} \\ -1 & \frac{1}{2} & 0 & \frac{1}{2} & 1 \\ -3 & 0 & \frac{1}{2} & 0 & -3 \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} & -1 \\ -\frac{1}{4} & \frac{1}{4} & -\frac{1}{8} & -\frac{1}{4} & -\frac{1}{4} \end{pmatrix}$$

$$\mathcal{L}^X(\psi_1, \psi_2, \psi_3, \psi_4) = \sum_{Y=SVTAP} C_{XY} \mathcal{L}^Y(\psi_1, \psi_4, \psi_3, \psi_2)$$

$$\mathcal{L}_{\text{NSI?}}^{(h^+)} = \sin^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{M_{h^+}^2} (\bar{\nu}_\alpha P_R \ell_\rho)(\bar{\ell}_\sigma P_L \nu_\beta)$$

NSI PARAMETERS IN ZEE MODEL

(Exercise) $\Rightarrow \mathcal{L}_{\text{NSI}}^{(h^+)} = -\frac{1}{2} \sin^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{M_{h^+}^2} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta)(\bar{\ell}_\sigma \gamma_\mu P_R \ell_\rho)$

NSI PARAMETERS IN ZEE MODEL

(Exercise) $\Rightarrow \mathcal{L}_{\text{NSI}}^{(h^+)} = -\frac{1}{2} \sin^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{M_{h^+}^2} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta)(\bar{\ell}_\sigma \gamma_\mu P_R \ell_\rho)$

Similarly,

$$\mathcal{L}_{\text{NSI}}^{(H^+)} = -\cos^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{2M_{H^+}^2} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta)(\bar{\ell}_\sigma \gamma_\mu P_R \ell_\rho)$$

NSI PARAMETERS IN ZEE MODEL

$$(\text{Exercise}) \Rightarrow \mathcal{L}_{\text{NSI}}^{(h^+)} = -\frac{1}{2} \sin^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{M_{h^+}^2} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta) (\bar{\ell}_\sigma \gamma_\mu P_R \ell_\rho)$$

Similarly,

$$\mathcal{L}_{\text{NSI}}^{(H^+)} = -\cos^2 \phi \frac{Y_{\alpha\rho} Y_{\beta\sigma}^*}{2M_{H^+}^2} (\bar{\nu}_\alpha \gamma^\mu P_L \nu_\beta) (\bar{\ell}_\sigma \gamma_\mu P_R \ell_\rho)$$

Finally, we get the total matter NSI in Zee model

$$\varepsilon_{\alpha\beta}^m \equiv \varepsilon_{\alpha\beta}^{ee,(h^+)} + \varepsilon_{\alpha\beta}^{ee,(H^+)} = \frac{Y_{\alpha e} Y_{\beta e}^*}{4\sqrt{2} G_F} \left(\frac{\sin^2 \phi}{M_{h^+}^2} + \frac{\cos^2 \phi}{M_{H^+}^2} \right)$$

CONCLUSIONS

- Overwhelming evidence for neutrino masses — large amount of different models to fit neutrino parameters.

CONCLUSIONS

- Overwhelming evidence for neutrino masses — large amount of different models to fit neutrino parameters.
- Three possible ways to generate neutrino masses.
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),
 - ▶ tree level (seesaw mechanism - suppression by heavy new particles or 't Hooft naturalness argument), or
 - ▶ loop level (radiative models - suppression by loop and helicity)

CONCLUSIONS

- Overwhelming evidence for neutrino masses — large amount of different models to fit neutrino parameters.
- Three possible ways to generate neutrino masses.
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),
 - ▶ tree level (seesaw mechanism - suppression by heavy new particles or 't Hooft naturalness argument), or
 - ▶ loop level (radiative models - suppression by loop and helicity)
- Non-type-I-seesaw mechanisms give rich particle physics phenomenology in flavour and scalar sectors.

CONCLUSIONS

- Overwhelming evidence for neutrino masses — large amount of different models to fit neutrino parameters.
- Three possible ways to generate neutrino masses.
 - ▶ EFT level (Weinberg operator - suppression by cutoff scale),
 - ▶ tree level (seesaw mechanism - suppression by heavy new particles or 't Hooft naturalness argument), or
 - ▶ loop level (radiative models - suppression by loop and helicity)
- Non-type-I-seesaw mechanisms give rich particle physics phenomenology in flavour and scalar sectors.
- Nonstandard interactions **may** distort neutrino oscillation transition probabilities and contribute to CLFV.
Simplest loop-generated mass model is ruled out, but there are two- and three-loop models.

THANK YOU FOR YOUR ATTENTION!

REFERENCES

- Zee mode pheno: Babu *et al.*, arXiv: 1907.09498.
- Type II seesaw pheno: Malinský *et al.*, arXiv: 0811.3346
- Type I seesaw pheno: Alekhin *et al.*, arXiv:1504.04855
- Abazajian *et al.*, arXiv: 1204.5379, *Light Sterile Neutrinos: A White Paper*
- Mass models:
 - ▶ André De Gouvêa, *Annu. Rev. Nucl. Part. Sci.* 2016. 66:197217;
 - ▶ S. F. King, arXiv:hep-ph/0310204;
 - ▶ Rabindra Mohapatra, *Massive neutrinos in physics and astrophysics*
 - ▶ Yorikiyo Nagashima, *Beyond the Standard Model of Elementary Particle Physics*