QCD transition in magnetic fields

Gergely Endrődi

University of Regensburg

Advances in Strong-Field Electrodynamics Budapest, 3rd-6th February 2014

Outline - first part

- introduction
 - strong interactions at finite temperature
 - quark-gluon plasma exposed to magnetic fields
 - appetizer: chiral magnetic effect in heavy-ion collisions
 - approaches to study QCD
- free case: energy levels
 - non-relativistic case, infinite volume
 - relativistic case, infinite volume
 - relativistic case, on the torus
 - Hofstadter's butterfly
- free case, thermodynamic potential
 - representation at finite T with Matsubara frequencies
 - treatment via Mellin transformation
 - alternative derivation: Schwinger proper-time method
 - alternative representation: with energies
 - charge renormalization vs B-dependent divergences
 - observables derived from log Z

Outline - second part

- numerical results I: phase diagram
 - symmetries and order parameters
 - predictions from effective theories and models
 - magnetic catalysis and inverse catalysis
 - ▶ transition temperature, nature of transition at nonzero B
- numerical results II: equation of state
 - concept of the pressure in magnetic fields
 - magnetization, magnetic susceptibility
 - comparison to hadron resonance gas model
 - squeezing-effect in heavy-ion collisions
- numerical results III: chiral magnetic effect
 - electric polarization of CP-odd domains
 - comparison to model predictions

	Phase diagram	CME

Literature

- Landau-Lifshitz Vol.3 Quantum mechanics, chapter XV. (non-relativistic eigenvalue problem)
- Akhiezer, Berestetskii: Quantum electrodynamics, chapter 12. (relativistic eigenvalue problem)
- Kapusta: Finite-temperature field theory, chapter 2. (functional integral for fermions/bosons)
- Al-Hashimi, Wiese: "Discrete accidental symmetry for a particle in a constant magnetic field on a torus"
- Hofstadter: "Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields"
- Schwinger: "On gauge invariance and vacuum polarization"
- Dunne: "Heisenberg-Euler effective Lagrangians: basics and extensions"

QCD and quark-gluon plasma

 elementary particle interactions: gravitational, electromagnetic, weak, strong

Standard Model

- strong sector: Quantum Chromodynamics
- elementary particles: quarks (~ electrons) and gluons (~ photons)
 but: they cannot be observed directly
 ⇒ confinement at low temperatures
- asymptotic freedom [Gross, Politzer, Wilczek '04]
 ⇒ heating or compressing the system leads to *deconfinement*: quark-gluon plasma is formed
- transition between the two phases characteristics: order (1st/2nd/crossover) critical temperature T_c

equation of state

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

QCD phase diagram

- why is the physics of the quark-gluon plasma interesting?
 - ► large *T*: early Universe, cosmological models
 - large ρ: neutron stars
 - ▶ large T and/or ρ : heavy-ion collisions, experiment design

- additional, relevant parameter:
 - external magnetic field B

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Example 1: neutron star

[Rea et al. '13]

- possible quark core at center with high density, low temperature
- magnetars: extreme strong magnetic fields

Typical magnetic fields

•	magnetic field	of	Earth	10^{-5}	Т
---	----------------	----	-------	-----------	---

- common magnet
- strongest human-made field in lab
- magnetar surface
- magnetar core

10⁻³ T 10⁻³ T 10² T 10¹⁰ T

?

Example 2: heavy-ion collision

[STAR collaboration, '10]

- off-central collisions generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- anisotropic spatial gradients

Example 2: heavy-ion collision

- off-central collisions generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- anisotropic spatial gradients

Example 2: heavy-ion collision

- off-central collisions generate magnetic fields: strength controlled by \sqrt{s} and impact parameter (centrality)
- strong (but very uncertain) time-dependence
- anisotropic spatial gradients

Typical magnetic fields

•	magnetic field of Earth	10^{-5} T
•	common magnet	10 ⁻³ T
•	strongest man-made field in lab	10 ² T
•	magnetar surface	10 ¹⁰ T
•	magnetar core	?
•	LHC Pb-Pb at 2.7 TeV, $b = 10$ fm [Skokov '09]	10 ¹⁵ T

convert: $10^{15} \text{ T} \approx 10 m_{\pi}^2 \approx 2\Lambda_{\text{QCD}}^2$ \Rightarrow electromagnetic and strong interactions can compete

Chiral magnetic effect

• QCD is parity-symmetric (neutron EDM $< 10^{-26} e$ cm)

$$\mathcal{L}_{\text{QCD}} = \sum_{f} \bar{\psi}_{f} \left(\not{D} + m_{f} \right) \psi_{f} + \frac{1}{2} \text{Tr} F_{\mu\nu} F_{\mu\nu} + \theta \cdot \underbrace{\frac{1}{16\pi^{2}} \text{Tr} F_{\mu\nu} \tilde{F}_{\mu\nu}}_{Q_{\text{top}}}$$

$$\Rightarrow heta < 10^{-10}$$
 (strong CP problem)

• axial anomaly

$$N_R - N_L \equiv \int d^4 x \, \partial_\mu j^{\mu 5} = 2 Q_{
m top}$$

 \Rightarrow topology converts between left- and right-handed quarks

Chiral magnetic effect

- local CP-violation through domains with ${\it Q}_{
 m top}
 eq 0$?
- detect them through magnetic field B [Kharzeev et al. '08]

- 1. quarks interact with B: spins aligned
- 2. quarks interact with topology: chiralities (helicities) "aligned"
- 3. result: charge separation

QCD + B

Gergely Endrődi

Chiral magnetic effect

- Q_{top} -domains fluctuate, direction of B fluctuates \Rightarrow effect vanishes on average
- correlations may survive $(\alpha, \beta = \pm)$ $a_{\alpha\beta} = -\cos \left[(\Phi_{\alpha} - \Psi_{RP}) + (\Phi_{\beta} - \Psi_{RP}) \right]$

[STAR collaboration '09]

- need 3-particle correlations (technically complicated)
- CME prediction:

$$a_{++} = a_{--} = -a_{+-} > 0$$

• CP-even backgrounds should be subtracted

Approaches to study QCD

- various methods in various regimes:
 - high T/B: perturbation theory
 - ▶ low T/B: chiral perturbation theory, hadronic models
 - transition region: non-perturbative methods, lattice gauge theory [Wilson, '74]
- discretize quark and gluon fields ψ and A_{μ} on a 4D space-time lattice with spacing a

• use
$$U_{\mu} = e^{iaA_{\mu}}$$
 instead of A_{μ}

•
$$U_{\mu}$$
: links, ψ : sites

• example: gauge action
$$F_{\mu
u}F_{\mu
u}(x)\sim \cup$$

$$(x) \sim \cup_{\nu(x)}^{t} \bigvee_{x \to \cup_{\mu(x)}}^{(x+\hat{\nu})} \cup_{\nu(x+\hat{\mu})}$$

Introduction	Phase diagram	CME
00000000000		

• functional integral

$${\cal Z} = \int {\cal D} {\it U}_\mu \, {\cal D} ar \psi \, {\cal D} \psi \, \exp \left(- \int {\sf d}^4 x \, {\cal L}_{
m QCD}
ight)$$

Introduction	Phase diagram	CME
00000000000		

• functional integral

$$\mathcal{Z} = \int \mathcal{D} U_{\mu} \, \exp \left(- \int d^4 x \, rac{1}{2} \mathrm{Tr} F_{\mu
u} F_{\mu
u}
ight) \cdot \prod_f \det \left(D \!\!\!/ + m_f^{\mathrm{lat}}
ight)$$

• functional integral

$$\mathcal{Z} = \int \mathcal{D} U_{\mu} \, \exp \left(- \int \mathrm{d}^4 x \, rac{1}{2} \mathrm{Tr} F_{\mu
u} F_{\mu
u}
ight) \cdot \prod_f \det \left(D \!\!\!/ + m_f^{\mathrm{lat}}
ight)$$

• ${\mathcal Z}$ analogous to partition function of a 4D statistical physics system; temperature and volume given as

$$T = 1/(N_t a), \qquad V = (N_s a)^3$$

• continuum limit with T and V fix:

$$a
ightarrow 0 \quad \leftrightarrow \quad N_s, N_t
ightarrow \infty, N_s/N_t = {
m fix}$$

- ${\cal Z}$ becomes a $\sim 10^9$ dimensional integral
 - importance sampling with weight e^{-S}
 - Monte-Carlo methods

- besides continuum limit, the biggest challenge is to simulate at the physical point: set m_f^{lat} such that the measured $m_{\pi}, m_p, m_{\rho}, \ldots$ are the same as in nature
- typical computational requirement $\mathcal{O}(10 \text{ Tflop/s} imes \text{year})$

 $\mathcal{O}(40 \text{ mio. core hours})$

 $\mathcal{O}(100 \text{ GPU} \times \text{year})$

Outline - first part

- introduction
 - strong interactions at finite temperature
 - quark-gluon plasma exposed to magnetic fields
 - appetizer: chiral magnetic effect in heavy-ion collisions
 - approaches to study QCD
- free case: energy levels
 - non-relativistic case, infinite volume
 - relativistic case, infinite volume
 - relativistic case, on the torus
 - Hofstadter's butterfly
- free case, thermodynamic potential
 - representation at finite T with Matsubara frequencies
 - treatment via Mellin transformation
 - alternative derivation: Schwinger proper-time method
 - alternative representation: with energies
 - charge renormalization vs B-dependent divergences
 - observables derived from $\log Z$

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 00000000000
 00000000000
 00000000000

Energy eigenvalues

• non-relativistic case, infinite volume

$$E_n = \frac{p_z^2}{2m} + 2|qB|(n+1/2 - \sigma_z), \qquad \#_n = \infty$$

relativistic case, infinite volume

$$E_n = \sqrt{p_z^2 + m^2 + 2|qB|(n + 1/2 - \sigma_z)}, \qquad \#_n = \infty$$

• relativistic case, finite volume (torus)

$$E_n = \sqrt{p_z^2 + m^2 + 2|qB|(n+1/2 - \sigma_z)}, \qquad \#_n = \frac{|qB| \cdot L^2}{2\pi}$$

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 00000000000
 000000000000
 00000000000
 00000000000

Magnetic flux quantization

• finite volume, continuum:

$$L^2 \cdot qB = \Phi = 2\pi N_b, \qquad N_b \in \mathbb{Z}$$

• finite volume, lattice:

$$(N_s a)^2 \cdot qB = \Phi = 2\pi N_b, \qquad 0 < N_b < N_s^2$$

picture from [D'Elia et al '11]

Gergely Endrődi

	Free case	Phase diagram		CME
00000000000	00000000	00000000000	0000000000000	000000000

Hofstadter's butterfly

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 00000000000
 00000000000
 00000000000
 00000000000

Hofstadter's butterfly and the Cantor set

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 0000000000
 0000000000
 000000000

Hofstadter's cocoon on the lattice

• lattice flux quantized: $(N_s a)^2 q B = \Phi = 2\pi N_b$

- infinite volume limit releases the butterfly
- continuum limit kills the butterfly

QCD + B

Gergely Endrődi

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Hofstadter's cocoon on the lattice

• lattice flux quantized: $(N_s a)^2 q B = \Phi = 2\pi N_b$

- infinite volume limit releases the butterfly
- continuum limit kills the butterfly

QCD + B

Gergely Endrődi

Free case	Phase diagram	CME
00000000		

Free energies

• charged spin-1/2 particle

$$f^{(1/2)}(T,B) = +\frac{1}{8\pi^2} \int \frac{\mathrm{d}s}{s^3} e^{-m^2 s} \cdot \frac{qBs \cdot \cosh(qBs)}{\sinh(qBs)} \cdot \Theta_3\left[\frac{\pi}{2}, e^{-1/(4sT^2)}\right]$$

• charged spin-0 particle

$$f^{(0)}(T,B) = -\frac{1}{8\pi^2} \int \frac{\mathrm{d}s}{s^3} e^{-m^2 s} \cdot \frac{qBs \cdot 1}{\sinh(qBs)} \cdot \Theta_3 \left[0, e^{-1/(4sT^2)} \right]$$

• in general, for spin $-\sigma$:

$$f^{(\sigma)}(T,B) = (-1)^{\sigma} \frac{qB}{2\pi} \sum_{n} \sum_{\sigma_z = -\sigma}^{\sigma} \int \frac{\mathrm{d}p_z}{2\pi} \left[E_n + 2T \log \left(1 + e^{-E_n/T} \right) \right]$$

$$E_n = \sqrt{p_z^2 + m^2 + 2qB(n+1/2 - \sigma_z)}$$

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Renormalization at zero temperature

- calculate change in f: subtract B = 0 contribution
- charge renormalization at $\mathcal{O}(B^2)$

$$\Delta f^{(1/2)}(0,B) = \frac{B^2}{2} + \frac{qB}{8\pi^2} \int \frac{ds}{s^2} e^{-m^2 s} \cdot \left[\coth(qBs) - \frac{1}{qBs} \right]$$
$$= \frac{B_r^2}{2} + \frac{qB}{8\pi^2} \int \frac{ds}{s^2} e^{-m^2 s} \cdot \left[\coth(qBs) - \frac{1}{qBs} - \frac{qBs}{3} \right]$$

• wave-function renormalization

$$B^2 = Z_q^{(1/2)} B_r^2, \qquad Z_q^{(1/2)} = 1 + q_r^2 \cdot \beta_1^{(1/2)} \cdot \log\left(\frac{m^2}{\Lambda^2}\right)$$

Ward identity

$$qB = q_r B_r, \qquad q^2 = rac{1}{Z_q^{(1/2)}} q_r^2$$

-

/ - `

Free case	Phase diagram	CME
000000000		

Renormalization

- expansion in the external field B diagrammatically
- $\mathcal{O}(B^0)$ contains *B*-independent divergences
- $\mathcal{O}(B^4)$ term is finite
- ▶ in the free case (1-loop)

• $\mathcal{O}(B^2)$ term $\propto q^2 \cdot \beta_1$

Free case	Phase diagram	CME
000000000		

Renormalization

- expansion in the external field B diagrammatically
- $\mathcal{O}(B^0)$ contains *B*-independent divergences
- $\mathcal{O}(B^4)$ term is finite
- with an internal photon to 2-loop

• $\mathcal{O}(B^2)$ term $\propto q^4 \cdot \beta_2$

Free case	Phase diagram	CME
000000000		

Renormalization

- expansion in the external field B diagrammatically
- $\mathcal{O}(B^0)$ contains *B*-independent divergences
- $\mathcal{O}(B^4)$ term is finite
- with an internal gluon to 2-loop

Free case	Phase diagram	CME
000000000		

Renormalization

- expansion in the external field B diagrammatically
- $\mathcal{O}(B^0)$ contains *B*-independent divergences
- $\mathcal{O}(B^4)$ term is finite
- with an internal gluon to 2-loop

- the coefficient of $\mathcal{O}(B^2)$ term equals the QED β -function (with QCD corrections)
 - \Rightarrow background field method [Abbott '81]

Renormalization – summary

- even though *B* is very similar to a chemical potential, it undergoes wavefunction renormalization
- *B*-dependent divergence $\propto (qB)^2\beta \log(\Lambda)$, which redefines the pure magnetic energy $B_r^2/2$
- implication: susceptibility χ_B vanishes at zero T
- in the free case, UV $(\Lambda \to \infty)$ and IR $(m \to 0)$ divergences are intertwined

 \Rightarrow quarks in SB limit are paramagnetic

$$\chi_B \propto \beta_1 \log(T/m) > 0$$

 \Rightarrow magnetic catalysis of the quark condensate at $\mathcal{T}=0$

$$\mathcal{O}((qB)^2): \quad \Delta ar{\psi} \psi \propto eta_1 > 0$$

Outline - second part

- numerical results I: phase diagram
 - symmetries and order parameters
 - predictions from effective theories and models
 - magnetic catalysis and inverse catalysis
 - ▶ transition temperature, nature of transition at nonzero B
- numerical results II: equation of state
 - concept of the pressure in magnetic fields
 - magnetization, magnetic susceptibility
 - comparison to hadron resonance gas model
 - squeezing-effect in heavy-ion collisions
- numerical results III: chiral magnetic effect
 - electric polarization of CP-odd domains
 - comparison to model predictions

QCD phase diagram

Temperature

• how to map out the transition line?

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Observables sensitive to transition

• chiral condensate \rightarrow chiral symmetry breaking m = 0

$$\bar{\psi}_f \psi_f = \frac{\partial \log \mathcal{Z}}{\partial m_f}$$

• chiral susceptibility

ightarrow chiral symmetry breaking m=0

$$\chi_{f} = \frac{\partial^2 \log \mathcal{Z}}{\partial m_{f}^2}$$

• Polyakov loop

ightarrow deconfinement " $m=\infty$ "

$$P = \operatorname{Tr} \exp\left[\int A_4(x,t) \,\mathrm{d}t\right]$$

Magnetic catalysis

- what happens to ψψ (⟨+q↑, -q↓⟩) in magnetic field?
 ⇒ magnetic moments parallel, energetically favored state (cf. Cooper-pairs in superconductors: Meissner effect)
- dimensional reduction $3+1 \rightarrow 1+1$ in the LLL

$$E_{LLL} = \sqrt{p_z^2 + m^2}, \qquad s_{z,LLL} = +1/2, \qquad \#_{LLL} = \frac{|qB| \cdot L_x L_y}{2\pi}$$

• chiral condensate \leftrightarrow spectral density around 0 [Banks, Casher '80]

$$ar{\psi}\psi\propto
ho$$
(0)

• in the chiral limit, to maintain $ar{\psi}\psi>0~({\sf NJL}$ [Gusynin et al '96])

$$B = 0$$
 $ho(p) \sim p^2 dp$ "we need a strong interaction"
 $B \gg m^2$ $ho(p) \sim qB dp$ "the weakest interaction suffices"

Magnetic catalysis – zero temperature

• MC at zero temperature is a robust concept: χ PT, NJL, AdS-CFT, linear σ , lattice QCD at physical/unphysical m_{π}, \ldots

University of Regensburg

QCD + B

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Magnetic catalysis – zero temperature

• MC at zero temperature is a robust concept: χ PT, NJL, AdS-CFT, linear σ , lattice QCD at physical/unphysical m_{π} , ...

QCD + B

Magnetic catalysis – finite temperature

• MC at T > 0 seemed a robust concept: χ PT, NJL, linear σ , lattice QCD with unphysical m_{π}

PNJL model [Gatto, Ruggieri '11]

Magnetic catalysis – finite temperature

• MC at T > 0 seemed a robust concept: χ PT, NJL, linear σ , lattice QCD with unphysical m_{π}

lattice QCD, unphysical m_{π} , coarse lattice [D'Elia et al '10]

Inverse magnetic catalysis

 lattice QCD, physical m_π, continuum limit [Bali,Bruckmann,Endrődi,Fodor,Katz,Krieg,Schäfer,Szabó '11, '12]

Inverse magnetic catalysis

 lattice QCD, physical m_π, continuum limit [Bali,Bruckmann,Endrődi,Fodor,Katz,Krieg,Schäfer,Szabó '11, '12]

• IMC disappears if m_{π} is increased $\Rightarrow \exists m_{\pi}^{\star}$ such that only $m_{\pi} < m_{\pi}^{\star}$ gives IMC

QCD + B

- inflection point of $\bar{\psi}\psi(T)$ defines T_c
- sinificant difference whether IMC is exhibited or not:

PNJL model [Gatto, Ruggieri '10]

- inflection point of $\bar{\psi}\psi(T)$ defines T_c
- sinificant difference whether IMC is exhibited or not:

lattice QCD, unphysical m_{π} , coarse lattice [D'Elia et al '10]

- inflection point of $\bar{\psi}\psi(T)$ defines T_c
- sinificant difference whether IMC is exhibited or not:

QCD + B

Mechanism behind IMC

- two competing mechanisms at finite B [Bruckmann, Endrődi, Kovács '13]
 - direct (valence) effect $B \leftrightarrow q_f$
 - indirect (sea) effect $B \leftrightarrow q_f \leftrightarrow g$

$$\bar{\psi}\psi(B) \propto \int \mathcal{D}U \, e^{-S_g} \underbrace{\det(\mathcal{D}(B, U) + m)}_{\text{sea}} \underbrace{\operatorname{Tr}\left[(\mathcal{D}(B, U) + m)^{-1}\right]}_{\text{valence}}$$

valence

Mechanism behind IMC

- two competing mechanisms at finite B [Bruckmann,Endrődi,Kovács '13]
 - direct (valence) effect $B \leftrightarrow q_f$
 - indirect (sea) effect $B \leftrightarrow q_f \leftrightarrow g$

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 000000000●00
 0000000000
 0000000000
 0000000000

Mechanism behind IMC

• valence sector: driven by the low eigenvalues of $ot\!\!/$

$$ar{\psi}\psi(\mathcal{B})\propto\int\mathcal{D}U\,e^{-\mathcal{S}_{g}}\prod_{i}(\lambda_{i}^{2}(0)+m^{2})\,\sum_{j}rac{m}{\lambda_{j}^{2}(\mathcal{B})+m^{2}}$$

• valence sector: *B* creates many low eigenvalues through Landau-level degeneracy

QCD + B

Mechanism behind IMC

• sea sector: disfavors low eigenvalues of $ot\!\!/$ through det

$$ar{\psi}\psi(B)\propto\int \mathcal{D}U\,e^{-S_g}\prod_i(\lambda_i^2(B)+m^2)\,\sum_jrac{m}{\lambda_j^2(0)+m^2}$$

most important gauge dof is the Polyakov loop

$$\bigwedge_{x} \bigcup_{t} (x,t=N_{t}-1)$$
$$\bigwedge_{x} \bigcup_{t} (x,t=1)$$
$$\bigcup_{x} (u_{t}(x,t=0))$$

Mechanism behind IMC

• sea sector: disfavors low eigenvalues of $ot\!\!/$ through det

$$ar{\psi}\psi(B)\propto\int \mathcal{D}U\,e^{-S_g}\prod_i(\lambda_i^2(B)+m^2)\,\sum_jrac{m}{\lambda_j^2(0)+m^2}$$

most important gauge dof is the Polyakov loop

• it represents a shift of the boundary condition \to influences lowest eigenvalues $\lambda_{\min} \sim P$

Mechanism behind IMC

• sea sector: disfavors low eigenvalues of $ot\!\!/$ through det

$$ar{\psi}\psi(B)\propto\int \mathcal{D}U\,e^{-S_g}\prod_i(\lambda_i^2(B)+m^2)\,\sum_jrac{m}{\lambda_j^2(0)+m^2}$$

most important gauge dof is the Polyakov loop

- it represents a shift of the boundary condition \to influences lowest eigenvalues $\lambda_{\min} \sim P$
- small eigenvalues suppress the determinant (weight)
 ⇒ B can increase det through the Polyakov loop

QCD + B

Mechanism behind IMC

• sea sector: disfavors low eigenvalues of D through det

$$ar{\psi}\psi(B)\propto\int \mathcal{D}U\,e^{-S_g}\prod_i(\lambda_i^2(B)+m^2)\,\sum_jrac{m}{\lambda_j^2(0)+m^2}$$

most important gauge dof is the Polyakov loop

small eigenvalues suppress the determinant (weight)
 ⇒ B can increase det through the Polyakov loop

QCD + B

Gergely Endrődi

University of Regensburg

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Phase diagram – conclusions

• valence and sea effects compete and around T_c the sea wins

Phase diagram – conclusions

- valence and sea effects compete and around T_c the sea wins
- lessons learned:
 - LL-picture not applicable to non-perturbative QCD
 - inclusion of dynamical quarks necessary in the models to reproduce the real phase diagram

 important to improve effective theories/models (at µ_B > 0 the lattice fails, for example)

Outline - second part

- numerical results I: phase diagram
 - symmetries and order parameters
 - predictions from effective theories and models
 - magnetic catalysis and inverse catalysis
 - ▶ transition temperature, nature of transition at nonzero B
- numerical results II: equation of state
 - concept of the pressure in magnetic fields
 - magnetization, magnetic susceptibility
 - comparison to hadron resonance gas model
 - squeezing-effect in heavy-ion collisions
- numerical results III: chiral magnetic effect
 - electric polarization of CP-odd domains
 - comparison to model predictions

Concept of pressure at nonzero B

• free energy
$$\mathcal{F} = -T \log \mathcal{Z}$$

• finite volume $V = L_x L_y L_z$, traversed by flux $\Phi = eBL_x L_y$

$$p_i = -\frac{1}{V}L_i \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}L_i}, \qquad M = -\frac{1}{V}\frac{1}{e}\frac{\partial\mathcal{F}}{\partial B}$$

Concept of pressure at nonzero B

• free energy
$$\mathcal{F} = -T \log \mathcal{Z}$$

• finite volume $V = L_x L_y L_z$, traversed by flux $\Phi = eBL_x L_y$

$$p_i = -\frac{1}{V}L_i \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}L_i}, \qquad M = -\frac{1}{V}\frac{1}{e}\frac{\partial\mathcal{F}}{\partial B}$$

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 00000000000
 00000000000
 0000000000

Concept of pressure at nonzero B

• free energy
$$\mathcal{F} = -T \log \mathcal{Z}$$

• finite volume $V = L_x L_y L_z$, traversed by flux $\Phi = eBL_x L_y$

$$p_i = -\frac{1}{V}L_i \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}L_i}, \qquad M = -\frac{1}{V}\frac{1}{e}\frac{\partial\mathcal{F}}{\partial B}$$

Magnetization from HRG

hadron resonance gas model: approximate free energy as

$$\mathcal{F} = \sum_{h} d_h \cdot \mathcal{F}_h^{\text{free}}(m_h, q_h, \sigma_h)$$

QCD input: masses, charges and spins of hadrons

QCD + B

Magnetization from HRG

- M > 0: QCD vacuum is paramagnetic
- zero-*T* contribution is a purely quantum effect, it is "created by virtual particles"

QCD + B

Magnetization from HRG

- M > 0: QCD vacuum is paramagnetic
- zero-*T* contribution is a purely quantum effect, it is "created by virtual particles"

QCD + B

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 00000000000
 00000000000
 00000000000

Magnetization from the lattice

• problem with $M \sim \partial \mathcal{F} / \partial B$: magnetic flux is quantized

$$\Phi = qB \cdot L_x L_y = 2\pi \cdot N_b, \qquad N_b \in \mathbb{Z}$$

 \Rightarrow *B*-derivative ill defined \Rightarrow naturally corresponds to the Φ -scheme

• magnetization determined from [Bali, Bruckmann, Endrődi et al '13]

$$p_x - p_z = -M \cdot eB$$

take an anisotropic lattice $\xi=a/a_{\alpha}$ [Karsch '82]

$$p_{\alpha} = -\xi^2 \frac{T}{V} \left. \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}\xi} \right|_a$$

• p_{α} contains certain components of the QCD action $\Rightarrow M \cdot eB$ contains *anisotropies* of the action

QCD + B

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Magnetization from the lattice

• anisotropy induced in the gluonic action

$$A(\mathcal{E}) = \frac{1}{2} \left(tr \mathcal{E}_x^2 + tr \mathcal{E}_x^2 \right) - tr \mathcal{E}_z^2, \qquad A(\mathcal{B}) = \frac{1}{2} \left(tr \mathcal{B}_x^2 + tr \mathcal{B}_x^2 \right) - tr \mathcal{B}_z^2$$

• anisotropy renormalization coefficients also enter here...

QCD + B

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 0000000000
 0000000000
 0000000000

Magnetization from the lattice

• dominant contribution is the fermionic anisotropy

Magnetization from the lattice

• dominant contribution is the fermionic anisotropy

$$M \cdot eB \approx \sum_{f} \mathcal{A}(\mathcal{C}_{f}) = \sum_{f} \left[\frac{1}{2} \left(\bar{\psi}_{f} \mathcal{D}_{x} \psi_{f} + \bar{\psi}_{f} \mathcal{D}_{y} \psi_{f} \right) - \bar{\psi}_{f} \mathcal{D}_{z} \psi_{f} \right]$$

$$\stackrel{-0.03}{=} \frac{1}{1 - 1} \stackrel{-0.04}{=} \frac{1}{1 - 1} \stackrel{-0.04}{=} \frac{1}{1 - 1} \stackrel{-0.05}{=} \frac{1}{1 - 1} \stackrel{\mathcal{P}[M \in B]}{=} \frac{1}{2(eB)^{2}}$$

$$\stackrel{-0.06}{=} \stackrel{-1}{=} \frac{1}{1 - 1} \stackrel{\mathcal{P}[M \in B]}{=} \frac{1}{2(eB)^{2}} \stackrel{-0.05}{=} \frac{1}{\log(a/a_{0})}$$

$$\bullet \text{ renormalization}$$

$$M \cdot eB = M^r \cdot eB + 2\beta_1^{\text{QCD}} (eB)^2 \log a_1$$

 $\beta_1^{\text{QCD}} = \beta_1 \sum_f \left(\frac{q_f}{e}\right)^2 + \Delta^{\text{QCD}}$

Renormalized magnetization

• subtract $\mathcal{O}((eB)^2)$ term determined at T = 0

- QCD vacuum is a paramagnet
- compare to hadron resonance gas model at low T
- linear response $M^r = \chi_1 \cdot eB$ gets stronger above T_c
Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 000000000
 00000000
 00000000

Paramagnetism and inhomogeneous fields

• $-\partial \mathcal{F}^r / \partial (eB) = M^r > 0$ \Rightarrow free energy \mathcal{F}^r minimized in the region where B is maximal

Paramagnetism - blood cells

 red blood cells displaced more if they contain more (paramagnetic) haemoglobin [Okazaki et al '87]

Paramagnetism - heavy ions

- take a non-central heavy-ion collision
 - \hat{z} : beam direction, \hat{x} - \hat{y} : transverse plane, \hat{x} : impact parameter

Paramagnetism - heavy ions

- take a non-central heavy-ion collision
 - \hat{z} : beam direction, \hat{x} - \hat{y} : transverse plane, \hat{x} : impact parameter

• free energy minimization squeezes QCD matter anisotropically [Bali,Bruckmann,Endrődi,Schäfer '13]

Paramagnetism - heavy ions

- take a non-central heavy-ion collision
 - \hat{z} : beam direction, \hat{x} - \hat{y} : transverse plane, \hat{x} : impact parameter

elliptic flow: anisotropic pressure gradients due to initial geometry

Elliptic flow

- robust effect in non-central collisions
- integrated v_2 used to extract η/s

[Luzum, Romatschke '08]

Elliptic flow vs paramagnetic squeezing

• the force density produced through paramagnetism:

$$F^{\mathrm{ps}} = -\nabla \mathcal{F}^r = -\frac{\partial \mathcal{F}^r}{\partial (eB)} \cdot \nabla (eB) = M^r \cdot \nabla (eB).$$

• simplistic way to quantify it:

$$\Delta p'_{\mathrm{ps}} = F^{\mathrm{ps}}(\sigma_x, 0) - F^{\mathrm{ps}}(0, \sigma_y)$$

• RHIC:
$$|\Delta p'_{\rm ps}| \approx 0.007 \text{ GeV/fm}^4$$

• LHC:
$$|\Delta p'_{\rm ps}| \approx 0.7 \ {
m GeV}/{
m fm}^4$$

- effect due to initial geometry [Kolb et al '00; Petersen et al '06; Huovinen]
 - RHIC: $|\Delta p_{\rm g}'| \approx 0.1 ~{
 m GeV}/{
 m fm}^4$
 - LHC: $|\Delta p_{
 m g}'| \approx 1~{
 m GeV}/{
 m fm}^4$

Elliptic flow vs paramagnetic squeezing

• the force density produced through paramagnetism:

$$F^{\mathrm{ps}} = -\nabla \mathcal{F}^r = -\frac{\partial \mathcal{F}^r}{\partial (eB)} \cdot \nabla (eB) = M^r \cdot \nabla (eB).$$

• simplistic way to quantify it:

$$\Delta p_{
m ps}' = F^{
m ps}(\sigma_x, 0) - F^{
m ps}(0, \sigma_y)$$

- ► RHIC: $|\Delta p'_{\rm ps}| \approx 0.007 \text{ GeV/fm}^4 \leftarrow \sim 7\%$ correction?
- LHC: $|\Delta p'_{\rm ps}| \approx 0.7 \text{ GeV/fm}^4 \leftarrow \sim 70\%$ correction?
- effect due to initial geometry [Kolb et al '00; Petersen et al '06; Huovinen]
 - RHIC: $|\Delta p_{
 m g}'| \approx 0.1 ~{
 m GeV}/{
 m fm}^4$
 - LHC: $|\Delta p_{\rm g}'| \approx 1~{\rm GeV}/{\rm fm}^4$

Equation of state – conclusions

 at B > 0, pressure depends on the scheme (B vs Φ)

- QCD vacuum is paramagnetic (free quarks in SB limit; HRG; lattice QCD with physical m_{π})
- at T = 0 this is a pure quantum effect; it produces no entropy
- paramagnetism + non-uniform fields = squeezing effect
 - in heavy-ion collisions: competes with elliptic flow
 - crude estimate: it might be important
 - ▶ future model descriptions: take into account B(x, y, t) and compare the two effects more carefully

Outline - second part

- numerical results I: phase diagram
 - symmetries and order parameters
 - predictions from effective theories and models
 - magnetic catalysis and inverse catalysis
 - ▶ transition temperature, nature of transition at nonzero B
- numerical results II: equation of state
 - concept of the pressure in magnetic fields
 - magnetization, magnetic susceptibility
 - comparison to hadron resonance gas model
 - squeezing-effect in heavy-ion collisions
- numerical results III: chiral magnetic effect
 - electric polarization of CP-odd domains
 - comparison to model predictions

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 0000000000
 0000000000
 00000000000
 0●0000000

Chiral magnetic effect

- local CP-violation through domains with ${\it Q}_{\rm top} \neq 0$?
- detect them through magnetic field B [Kharzeev et al. '08]

- 1. quarks interact with B: spins aligned
- 2. quarks interact with topology: chiralities (helicities) "aligned"
- 3. result: charge separation

QCD + B

Gergely Endrődi

Chiral magnetic effect

- Q_{top} -domains fluctuate, direction of B fluctuates \Rightarrow effect vanishes on average
- correlations may survive $(\alpha, \beta = \pm)$ $a_{\alpha\beta} = -\cos \left[(\Phi_{\alpha} - \Psi_{RP}) + (\Phi_{\beta} - \Psi_{RP}) \right]$

[STAR collaboration '09]

- need 3-particle correlations (technically complicated)
- CME prediction:

$$a_{++} = a_{--} = -a_{+-} > 0$$

• CP-even backgrounds should be subtracted

Polarization of θ **-domains**

• magnetic/electric field induces magnetic/electric polarization

$$ar{\psi}_f \sigma_{\mu
u} \psi_f \propto q_f F_{\mu
u}, \qquad \sigma_{\mu
u} = [\gamma_\mu, \gamma_
u]/2i$$

• in the presence of topology, the roles are exchanged

 $\epsilon_{\mu\nu\alpha\beta} \, Q_{\rm top} \cdot \bar{\psi}_f \sigma_{\alpha\beta} \psi_f \propto q_f F_{\mu\nu}$

• put instanton configuration ($Q_{top} = 1$) on the lattice and expose it to magnetic field ($B = F_{xy}$) [Abramczyk et al '09]

Polarization of θ **-domains**

- QCD vacuum: no instanton but local fluctuations in $q_{
 m top}$
- polarization exhibits a local correlation [Bali,Bruckmann,Endrődi,Fodor,Katz,Schäfer '14]

$$\left\langle \int \mathsf{d}^4 x \, q_{\mathrm{top}}(x) \cdot ar{\psi}_f \sigma_{zt} \psi_f(x) \right
angle \propto q_f F_{xy}$$

Polarization of θ **-domains**

- lattice approach
 - measure the correlator at physical m_{π}
 - renormalization involves smearing of fields over a range R_s
 - extrapolate to continuum limit and to $R_s
 ightarrow 0$
- model description
 - ▶ assume q_{top} is generated by constant self-dual background fields G_{xy} = G_{zt} (parallel to magnetic field F_{xy})
 - ▶ neglect quark masses $m^2 \ll F, G \leftrightarrow LLL$ approximation
 - assume normal distribution for q_{top}
- consider the dimensionless combination

$$C_{f} = \frac{\left\langle q_{\text{top}}(x) \cdot \bar{\psi}_{f} \sigma_{zt} \psi_{f}(x) \right\rangle}{\sqrt{\left\langle q_{\text{top}}^{2}(x) \right\rangle} \left\langle \bar{\psi}_{f} \sigma_{xy} \psi_{f}(x) \right\rangle}$$

Polarization of θ **-domains**

- model: $C_f \sim 1 \Rightarrow B$ -polarization equals *E*-polarization for unit topology
- lattice: $C_f \sim 0.13$

 \Rightarrow non-perturbative QCD interactions prevent full electric polarization of the quarks (for massive quarks spin flip becomes possible)

QCD + B

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

Electric charge separation

• the localized electric dipole moment is related to an extended charge structure

$$D_f(\Delta) = \left\langle \int \mathsf{d}^4 x \, q_{ ext{top}}(x) \cdot ar{\psi}_f \gamma_0 \psi_f(x + \Delta)
ight
angle \propto q_f B, \quad ext{ if } \Delta \parallel B$$

 Introduction
 Free case
 Phase diagram
 Equation of state
 CME

 00000000000
 00000000000
 00000000000
 0000000000
 000000000

CME - conclusions

- local CP violation induced through B + fluctuating $q_{top}(x)$
- usual assumptions (LLL, massless quarks) overestimate strength of local CP violation by order of magnitude

	Phase diagram	CME

Summary

